

Novel Architectures for Baseband Processing

Viktor Öwall

Dept. of Electrical and Information Technology Lund University, Sweden viktor.owall@eit.lth.se

2010-09-23

Outline

- Multibase project and DFE Rx
- Reconfigurable computations
- Sign bit synchronization
- Analog decoding
- SVD-based channel estimation

Multibase: January 2008 – April 2011

Scalable Multi-tasking Baseband for Mobile Communications

- 1. Multi-streaming radio (concurrent execution of multiple standards)
- 2. Scalable programmable/reconfigurable multi-processor technology
- 3. Algorithm/architecture co-design for maximum energy efficiency

LU Focus: Synch and Channel Estimation, algorithms and architectures.

2010-09-22

FP7 STREP Multi-Base

Lund focus in circuits: DFE Rx

imec

Contributors: I. Diaz¹, L. Hollevoet², T. Olsson³, J. Rodrigues¹, J. Svensson³, L. Van Der Perre², L. Wilhelmsson^{3,} C. Zhang¹, and V. Öwall¹

> ¹Lund University ²IMEC ³Ericsson

- Design a multi-standard digital front-end receiver including:
 - Automatic Gain and Resource Activity Controller
 - Compensation
 - Filtering and resampling
 - Synchronization
- Support for concurrent data streams

• Supported standards: LTE, DVB-H and IEEE 802.11n

The standards

- All three standards are OFDM based, however with different FFT-size:
 - LTE: 128-2048
 - DVB-H: 2048, 4092 (and 8192)
 - IEEE 802.11n: 64-128
- ...and different sample rates:
 - LTE: 30.72 Msps
 - DVB-H: 9.143 Msps
 - IEEE 802.11n: 20 or 40 Msps

AGRAC - Automatic Gain and Resource Activity Controller

- Performs AGC of the analog frontend
- Enables/disables other subblocks of the DFE Rx and baseband processing as required.
- Hierarchical wakeup to conserve power.

Hierarchical wakeup: principle

Example: reception of WLAN

DFE Decimation Chain

- Reconfigurable for LTE, 802.11n, and DVB-H
- One decimation chain for each DFE stream

Farrow Resampler

- Polynomial order = 3, Length = 8
- Transposed FIRs for reduced delay
- Optimized fixed point coefficients and maximal coefficient sharing
 - Realized through integer linear programming

Synchronization

Synchronization Architecture

Synchronization Hardware

Mapped onto a reconfiguarble processing array:

- flexibility since multi-standard
- hardware reuse since sync only part of the time

Multi-standard OFDM time synchronization

- Multiple radio standard support
- Dual-standard concurrent support
- Scenario-aware adaptive resource allocation
- Expandable to more streams

Interleaved data storage

 Micro-block function in MC eliminates data alignment operations in PC.

Coarse-grained reconfigurable architecture

- Heterogeneous cell array.
- Decoupled processing and memory cells.
- Dedicated local connections for high data throughput.
- Hierarchical global routing network for communication flexibility.
- Single-Cycle-Per-Hop communication latency.
- Centralized & Distributed cell configuration management.

Application mapping with CAL

Mapping of applications and algorithms is a crucial task in order to make them useful.

- In cooperation with the computer science department at LTH.
- CAL, data flow language to specify parallelism for parallel hardware.
- Data centric application mapping.

The Chip

- Infineon 65nm CMOS process
- Total area 5mm²
- 144 Pads
- Clock frequencies:
 - Main part 80MHz
 - Synchronization engine 320MHz through on-chip clock multiplier

The Chip

Alternative: Sign-Bit Synch.

What can we do with only the sign of the IQ components?

Presented at ISCAS '10 and VTC '10.

Alternative: Sign-Bit Synch.

What can we do with only the sign of the IQ components?

To be further evaluated, OK for coarse synch?

2010-09-23

Sign-Bit Synchronization: implementation results

97% area reduction

UPD: analog decoding

Analog decoder in a digital environment.

2010-09-22

UPD: analog decoding

S

Why analog decoders:

- very low power consumption
- less area on silicon
- high throughput due to parallel computations

Analog decoder: analog in/digital out

2010-09-23

Analog Core Module for BCJR

Analog Core The structure of the core will decide the code, e.g. Hamming or tailbitingconvolutional (7,5)

Analog Core Module used for BCJR calculations.

Analog Core Module for BCJR

 $\begin{bmatrix} \alpha_{k}(0) = \alpha_{k-1}(0) \ \gamma(0) + \alpha_{k-1}(1) \ \gamma(3) \\ \alpha_{k}(2) = \alpha_{k-1}(1) \ \gamma(0) + \alpha_{k-1}(0) \ \gamma(3)$

Forward metric calculations in BCJR algorithm. Backward in the same way.

Equivalent analog circuit.

Alternative structure: digital in/digital out

Decoder Output for a Single Bit

Cadence netlist simulations:

- Less than 4 µs is needed to decode the transmitted codeword
- Decision: when circuit converges to an steady state

BER performance

Results: Analog Hamming Decoder

Technology	TI's 65nm low power CMOS library
Supply Voltage	1.4 V
Input Voltage Range	400-800 mV
Clock Frequency	2 MHz
Decoder Throughput	1 Mb/s
Energy per decoded bit	22 pJ/b
Coding gain @ BER= 10^{-3}	1.3 dB

	Power Consumption $[\mu W]$	Percentage [%]	
Input interface	14	63.6	
Decoder core	6	27.3	
Output interface	2	9.1	
Total	22	100	

2010-09-23

Future work: extend to Convolutional

Expectations: Better performance compared to Hamming decoder

Cost: More complexity => More power consumption and area

How much? => Research is ongoing

- SVD reduces the complexity of a linear MMSE estimator
 - A number of values are close to zero and can be ignored

SVD-based Architecture, where U and V are orthonormal matrices and Q-1 is a filtering matrix. $W = UDU^{H} = UD^{1/2} (UD^{1/2})^{H}$

Conceptual Architecture showing a number of values ignored

- SVD reduces the complexity of a linear MMSE estimator
 - A number of values are close to zero and can be ignored.
 - HOW MANY?

 $W = UDU^{H} = UD^{1/2} (UD^{1/2})^{H}$

Presented at NORCHIP 2009

- SVD reduces the complexity of a linear MMSE estimator
 - A number of values are close to zero and can be ignored.
 - HOW MANY?

 $W = UDU^{H} = UD^{1/2} (UD^{1/2})^{H}$

Presented at NORCHIP 2009

- An architecture using four multipliers has been designed for FPGA and ASIC.
 - FPGA: Functional verification and Resource Usage
 - ASIC in UMC130nm: Area and Power Simulation

Resource Used Units **Available Units** Percentage Used Slices 1304 13696 9 % Slice Flip Flops 947 3 % 27392 27392 8 % 4 input LUTs 2442 IOs 56 bonded IOBs 556 10 % 56 MULT18X18s 136 11 % 16 GCLKs 1 16 6 %

TABLE I RESOURCE UTILIZATION IN THE XILINX VIRTEX-II PRO

TABLE II Synthesizer Report for ASIC synthesis

Constraint	Combinational	Noncomb.	Total	Max freq.
Max Speed	1.19 mm^2	0.18 mm^2	1.38 mm^2	179 MHz
Min Area	0.78 mm^2	0.18 mm^2	0.96 mm^2	101 MHz

Simulated Power Consumption

- Average power consumption of 14.2 mW
- Peak power consumption 84.5 mW

...and now to: Faster-than-Nyquist (FTN) receiver

Thank You!

2010-09-23