

Below the Threshold - Modelling, Technology, and Performance

Joachim Rodrigues

Department of Electrical and Information Technology

Lund University, Sweden

SOS Workshop 2010

Sep 22nd, 2010

People and Sponsors

People working on low power

- Yasser Sherazi
- Dr. Omer Can Akgun
- Dr. Peter Nilsson
- Dr. Joachim Rodrigues

This work is financed by

Vinnova (SoS), SSF (UPD), Vetenskapsrådet.

... more people who contributed

Yusuf Leblebici (EPFL), Jens Sparsø (DTU)

Motivation and Sub-VT Basics

Why Sub-threshold?

- ► Scale V_{DD} aggressively and reduce energy dissipation.
- Optimum supply voltage value for lowest energy per operation.
- Low-energy applications where speed is not constraint.
- Leakage energy decreases exponentially, dynamic decreases quadratically.
- ► Delay increases exponentially ⇒ Scientific Challenge.

Sub-threshold Energy model

No standard/commercial flow available which characterizes designs with $V_{\text{DD}} \leq 400 \text{ mV}.$

High-level Energy Model

- Conventional EDA tools.
- SPICE-accurate in a fraction of SPICE simulation time.
- Any RTL design.
- Standard- and full-custom based designs.
- Custom developed scripts.
- Asynchronous/ synchronous designs.

Energy Model Application

Simulation and measurement of a cardiac event detector in 65 nm LL-HVT.

Simulated and measured data. Energy minimum at V_{DD} = 320 mV (20 kHz).

Technology Selection

 A reference design is synthesized over several technology nodes.

- Energy in sub-V_T is simulated over a scaled V_{DD}
- Low-leakage options were used.
- 65 nm LL-HVT is most energy efficient.

Energy dissipation for varying supply voltages across technology nodes.

With special low-power process options, it is beneficial to migrate to smaller technologies.

Throughput Improvement by Parallelizing

A Half-band filter is characterized in the sub-V $_{\mathcal{T}}$ domain.

- ► Throughput is increased by a parallel processing ⇒ reduce V_{DD}.
- Area (and leakage) increases accordingly.

Energy vs. throughput for original and unfolded architecture.

Fabricated ASICs

An synchronous and an asynchronous Sub-V $_{\mathcal{T}}$ ASIC were fabricated in 65 nm LL-HVT.

- Measurements confirm energy simulations.
- ASICs are functional downto 250 mV (as expected).
- Naked (no protection).
- ► In-house RTL-GDSII flow.

Analog Completion Detection- Current Sensing

Computation signature is detected as the temporary drop of the supply voltage at the drain node of the transistor.

We are interested in the computation phase signal.

Throughput Gain

- Idle time in asynchronous circuits is constant (communication protocol).
 - Idle time in synchronous circuits is constraint by worst-case corner case.

Speed Improvement

- 58.7 % speed-up including overhead (PrimeTime).
- 52.6 % speed-up with real data (HSPICE).

Power Domain Separation

Current drawn by the registers is dominant. To retrieve *processing time*, independent power domains for combinational and sequential gates are introduced (Synopsys DC).

Some Measurements...

Oscilloscope measurements of the ASIC in- and output signals.

Measurement of the completion detection signal

The completion detection signal (inverted) is measured and plotted successively and overplotted (varies between 6 and 40μ s).

The Device

ASIC 65 LL-HVT

- Implemented as part of a multi project die in a 65 nm digital process.
- ASICs are fully operational down to 250 mV.
- Asynchronous design: Core area increases by 8.2% (power domain separation), completion detection circuit adds another 4.6%.

The Movie

Propagation delay of the critical path is measured.

- ► A high-level energy estimation flow for sub-V_T domain characterization was presented.
- ► The flow is applicable to standard-cell and full-custom design.
- A self-timed (asynchronous) and synchronous ASIC were fabricated in 65 LL-HVT CMOS
- The ASICs are functional down to 250 mV
- ASASAP (as soon and simple as possible)