

From sub-V_T RF to mm-wave CMOS Circuits

Henrik Sjöland Department of Electrical and Information Technology Lund University, Sweden

Outline

- Introduction
- Beamforming Circuits
- Circuits for Cellular Applications
 - LNAs
 - Channel Filters
- Sub- $V_T RF$
 - LNA + Mixers
 - Antennas
- Conclusions

Introduction

CMOS scaling =>

- Faster devices
 - µ-Wave & mm-Wave CMOS
- More devices per chip
 - Beamforming
- Weak inversion RF
 - Micropower radio
- Less voltage
 - System-on-package
 - MEMS
 - Devices with thick oxide and/or extended drain

Beamforming Circuits

Andreas Axholt

Beamforming Benefits

Beamforming Architectures

1. RF path - True delay line - Reflection coupler	Substrate losses
2. Analog baseband - Cartesian vector combination	Quad LO distribution & area/current overhead
3. Digital baseband	Quad LO distribution & <u>area/current</u> overhead
 4. LO path Cartesian LO vector combination Injection Locked VCO → PLL → 	Quad LO distribution Injection Signal distribution area/current overhead, NO signal variation versus phase setting

Beamforming Circuit 1:

A PLL based 12GHz LO Generator with Digital Phase Control

Received the APMC Prize

Asia-Pacific Microwave Conference 2009

SUNTEC SINGAPORE INTERNATIONAL CONVENTION & EXHIBITION CENTRE | DECEMBER 7-10 | SINGAPORE

LO Routing Problem

PLL with Phase Control

Chip with 2 PLLs

Lund University / Dept. of Electrical and Information Technology / Henrik Sjöland – Circuit Design Workshop 2010

Measurement: Phase control

Measurement: Phase noise

Measurement: Spectrum

Beamforming Circuit 2:

A 14.5 GHz Injection Locked LO Generator with Digital Phase Control

IMS 2010

Measured Phase Control Range

Beamforming Circuit 3:

A 24-GHz 90-nm CMOS Beamforming Receiver Front-End with Analog Baseband Phase Rotation

To be shown in the next presentation!

Beamforming Circuits 4 and 5

Circuit 4: New architecture, in measurement Circuit 5: PLL based receiver at 60GHz, in fabrication

More about these at the LCD Workshop 2011

Circuits for Cellular Applications

- LNAs
- Channel Select Filters
- Ongoing work: Power amplifiers

Low Noise Amplifier 1

Gholamreza Zare Fatin

Visit from Univ. of Tabriz, Iran

IEEE Microwave and Wireless Components Letters 2010

Measurements

Low Noise Amplifier 2

Gholamreza Zare Fatin

Visit from Univ. of Tabriz, Iran

Springer Journal on Analog Integrated Circuits and Signal Processing 2010

Lund University / Dept. of Electrical and Information Technology / Henrik Sjöland – Circuit Design Workshop 2010

Simulation:

Comparisons to CG and CC CG LNAs

WLAN/WiMax Channel Select Filter

Mostafa Savadi Osgooei

Visit from Univ. of Tehran, Iran

6th order filter in 90-nm CMOS

Gm-C biquad with improved linearity

RFIC 2010

Measurements

Lund University / Dept. of Electrical and Information Technology / Henrik Sjöland – Circuit Design Workshop 2010

A 175µW 150MHz-2GHz inductorless receiver front-end in 65nm CMOS Carl Bryant

Not yet published

Antennas for Link between Hearing Aids

Lund University / Dept. of Electrical and Information Technology / Henrik Sjöland – Circuit Design Workshop 2010

Conclusions

- Activities in different fields:
 + µWave & mm-Wave CMOS
 + Cellular
 + Micropower radio
 + Nanowires for RF
 + MEMS starting up
 + ...
- Enabled by
 - + Centers
 - + Cooperation

