

Cellular Electronics -Baseband Processing

Viktor Öwall

Dept. of Electrical and Information Technology Lund University, Sweden viktor.owall@eit.lth.se

2010-09-09

Outline

• The team

- Multi-standard/Multi-mode
- Wrap-up: Multibase project and DFE Rx
- Sign-bit processing: an OK alternative?
- Knowing the channel: channel estimation for LTE.
- Multi-mode MIMO detection
- Life after OFDM: Going Faster than Nyqvist?
- Conclusion

The Team

Multi-standard/Multi-mode

Multi-standard: Do we need a motivation today? Multi-mode:

- experience fluctuating channel conditions
- satisfy dynamic system specifications
- static implementation for the worst case is highly inefficient
- Multi-mode implementation chooses the best mode dynamically

Main Focus: Investigate/develop algoritm with a hardware perspective!

FP7 STREP Multi-Base

Lund focus in circuits: DFE Rx

Contributors: I. Diaz¹, L. Hollevoet², T. Olsson³, J. Rodrigues¹, J. Svensson³, L. Van Der Perre², L. Wilhelmsson^{3,} C. Zhang¹, and V. Öwall¹

> ¹Lund University ²IMEC ³Ericsson

Status of Multibase

Passed with flying colors at the final review.

Status:

- Complete DFE Rx taped out in June.
- Working Silicon.
- Infineon 65nm CMOS
- Chip area 5mm²
- Core area 3.5mm²

Multi-standard concurrency...

- All three standards are OFDM based, however with different FFT-size:
 - LTE: 128-2048
 - DVB-H: 2048, 4092 (and 8192)
 - IEEE 802.11n: 64-128
- ...and different sample rates:
 - LTE: 30.72 Msps
 - DVB-H: 9.143 Msps
 - IEEE 802.11n: 20 or 40 Msps

Verification and Test

Considerable testing is ongoing.

2010-09-09

OFDM Synchronization

Syncrhonization

- either using the Preamble for WLAN
- or cyclic prefix for LTE and DVB-H (also WLAN but...)

Synchronization Architecture

Multibase Synchronization Hardware

Mapped onto a reconfiguarble processing array:

- flexibility since multi-standard
- hardware reuse since sync only part of the time

Next presentation!

Alternative: Sign-Bit Synchronization together with Leif Wilhelmsson @Ericsson

- Huge complexity reduction at a cost of performance degradation
- Area improvement for memories
 97% when compared to 8-bits
- Area improvement for logic 70% when compared to 8-bits
- Total Area improvement 93% when compared to 8-bits

Sign-Bit Synchronization: Performance

2010-09-09

Early SNR estimation: useful for many functions

- Adapting Coding
- Channel Estimation
- Time Synchronization
- Base Station handover

The SNR Estimator

Performance Analysis: clearly distinguishes low-medium-high SNR classes

Full Precision under various SNR and CFO=50Hz

Sign Bit under various SNR and CFO=50Hz

Performance Analysis: Good results, mind CFO

SNR estimation in the baseband

We will continue the DFE within DARE!

- Target: LTE rel. 10 , a.k.a. LTE-advanced
- Compensation in the digital domain, e.g. IQ-imbalance, CFO, mismatch, etc.
- Adapt analog and AD blocks
- Exchange info with following baseband processing

Channel Estimation

Matching Pursuit Algorithm:

- The channel is estimated in the time domain
- A Successive Cancelation approach
 - The strongest tap is found and added to the estimate
 - At the same time its effects are removed from the input

What resolution should we use in the time domain?

- Higher resolution tends to improve the estimate
 ⇒ higher complexity.
- Certain resolutions with nice properties can be found
 ⇒ large number of zero coefficients
 - ⇒ reduced complexity

LTE parameters

- Long Term Evolution
 - LTE Advanced has been accepted as the 4G standard
- Up to 20 MHz bandwidth
 - FFT Size (i.e. samples/symbol): 2048
 - Used Sub-Channels: 1200
- Two different cyclic prefix modes:
 - Short Cyclic Prefix: 144 samples
 - Long Cyclic Prefix: 512 samples
- Pilots or Reference Signals continuously transmitted

The coefficients

- ٠
 - 1200 samples gives only one non-zero coefficients —
 - Unfortunately low performance
 - 2400 samples means that every second coefficient is zero
 - Leads to lower complexity than for 2048 samples!

Hardware Architecture

The FFT of 2400 points Decomposes as N = 2⁵3¹5² ⇒ requires Radix 3 and Radix 5 units

TABLE I

MULTIPLICATIONS IN DIFFERENT STAGES

Design	One Iteration	IDFT/DFT	IFFT/FFT	Full Estimate
Original	512	$\sim 614 \mathrm{K}$	$\sim 22.5 \mathrm{K}$	$\sim 96 \mathrm{K}$
Proposed	300	720K	$\sim 27 \mathrm{K}$	$\sim 84 \mathrm{K}$

2010-09-09

Multi-mode MIMO in LTE-A

Spatial Multiplexing: Increased rate

Spatial Diversity: Increased SNR

Space Division Multiple Access: Increase cell spectrum efficiency

Different antenna configurations and modulation schemes

Objective: unified multi-mode signal detector

Unified MIMO detector supporting multiple modes

• Integrate multiple detectors into a single module \rightarrow area efficiency

Needed Resources

Spatial Diversity: Increased SNR

Onerations	MIMO Technologies			
Operations	SM	SDMA	SD	
Matrix decomposition				
Matrix- permutation	\mathbf{X}		X	
Node Selection	\checkmark	\checkmark		
Interference Cancellation			X	
Euclidean Distance	\checkmark			
Sorter	\checkmark	\checkmark	\mathbf{X}	

• SM – using Imbalaced fixed-complexity sphere decoder

• SDMA – using Matrix permutated fixed-complexity sphere decoder

• SD – using Real-valued succesive interference calculation

Example: SDMA

- Unified at the architecture design level
 - Multi-stage architecture corresponding to antennas
 - Activate different stages according to antenna configuration

Results

- Supports the largest number of MIMO modes
- Consumes the least hardware and energy

	TCAS-I'09	ISSCC'09	TCAS-II' 10	This Work
MIMO Tec.	SM	SM	SM	SM/SD/SDMA
Antenna Size	up to 6×4	4×4	up to 4×4	up to 4×4
Modulation	up to 64-QAM	64-QAM	up to 64-QAM	up to 64-QAM
Core Area	1.46 mm^2	0.9 mm^2	3.9 mm^2	0.25 mm^2
Gate Count	205 KG	114 KG	491 KG	88.2 KG
Clock Rate	71 MHz	282 MHz	137.5 MHz	165 MHz
Throughput	114 Mb/s	675 Mb/s	1.1 Gb/s	1.98 Gb/s
Power	30 mW	135 mW	127.2 mW	102.7 mW
Consumption	@ 1.1 V	@ 1.3 V	@ 1.2 V	@ 1.2 V
Normalized	17.9 mW	57.5 mW	63.6 mW	102.7 mW
Power	17.5 1110			102.7 110
Normalized	156.6 nJ/b	85.2 pJ/b	57.8 pJ/b	51.8 nI/b
Energy	150.0 part			51.6 p3/0

2010-09-09

We will continue MIMO within DARE!

- Target: LTE rel. 10 , a.k.a. LTE-advanced
 - Robust baseband receiver algorithms
 - Including carrier aggregation, e.g. Isael Diaz is currently visiting IMEC and is working on a project looking at hardware architectures within this area.

Life after OFDM:

Going Faster than Nyqvist?

2010-09-09

FTN Signaling

- Original concept by J.E. Mazo in 1975 (Bell Syst. Tech. J).
- Main idea
 - transmit info beyond Nyquist's criterion for ISI free transmission.
 - Stack closer in time and/or freq induce intentional interference.

FTN Signaling

- Original concept by J.E. Mazo in 1975 (Bell Syst. Tech. J).
- Main idea
 - transmit info beyond Nyquist's criterion for ISI free transmission.
 - Stack closer in time and/or freq induce intentional interference.

FTN Signaling

- Original concept by J.E. Mazo in 1975 (Bell Syst. Tech. J).
- Main idea
 - transmit info beyond Nyquist's criterion for ISI free transmission.
 - Stack closer in time and/or freq induce intentional interference.
 - Investigate OFDM-systems due to their popularity
 - Reuse as much as possible from a "standard" system
- Motivation: Bandwidth efficient systems
 - Alternative to higher order modulation
 - Study hardware feasability

FTN Architecture

- Trade-off bandwidth for hardware complexity!
- Keep as much as possible from a "traditional" system.

Optimizing the architecture

- Initial design: 0.5 mm² in ST65 nm standard cell CMOS
- Power: 44mW (80% in the memories)!

Main target for optimization: the memories!

For example by using a fixed variance:

- Reduce algorithmic complexity (minor)
- Saves buffer (major)!

Performance with fixed variance

COMPARISON OF TOTAL AREA AND POWER BETWEEN BASELINE AND MEMORY OPTIMIZED IMPLEMETATIONS.

	Baseline [7]	Memory optimized	Savings		
Chip area	$0.519 \mathrm{~mm^2}$	$0.370 \ { m mm}^2$	28.7%		
Total Power	$44.7 \mathrm{mW}$	$25.1 \mathrm{mW}$	43.8%		
- Logic	$8.0 \mathrm{mW}$	$6.5~\mathrm{mW}$	18.7%		
- Memory	$36.7 \mathrm{mW}$	$18.6 \mathrm{mW}$	49.3%		
$10^{-6} \xrightarrow{I}_{\Delta} = 0.7 \text{ fixed } \sigma^2$ $10^{-6} \xrightarrow{I}_{D} \xrightarrow{I}_{\Delta} = 0.7 \text{ calculated } \sigma^2$ $10^{-6} \xrightarrow{I}_{D} \xrightarrow{I}_{D$					

2010-09-09

Fabricated Silicon

- Chip area: 0.5 mm² in ST65 nm standard cell CMOS
- Power: 44mW (80% in the memories)
- Throughput: 3.2Mbps at 300MHz.
- Tape-out: November 2010
- Measured and working.
- FTN-signaling is deemed feasable from a hardware perspective.
- Complexity overhead.
 - Memory : same order as a max-log-MAP implementation, (7,5) conv code.
 - Logic: ~5 times

Published in IEEE Transactions of Circuits and System – I (TCAS-I)

- Results and future plans for Digital Front End architectures
- Sign-bit processing for low complexity
- Reduced complexity channel estimation in LTE
- Multi-mode MIMO detection architectures
- Architecture and implementation of an FTN-signaling receiver.

Thank You!

2010-09-09