Posters from the 2011 Lund Circuit Design Workshop

September 8-9, 2011

mmWave Beamforming

Working and Measured

60 GHz, 20 GHz PLL, Transformers, Balun, Mixers, LNAs, QVCO, Binary-to-Thermometer decoder

Andreas Axholt, PhD September 7, 2011

Transmitters with Adaptive Impedance Matching

Jonas Lindstrand Markus Törmänen and Henrik Sjöland

Improving the linearity of a passive down-conversion mixer

Chip under measurement

- Linearize the mixer devices
- Improving the IIP2
- LNA + mixer
- Conversion gain of 12 dB

Problems to be solved

- Make it robust against mismatch and process variation
- Increase the performance for the differential output

Martin Liliebladh, Henrik Sjöland, Pietro Andreani

<u>A CT ΔΣ Modulator for Low Power Radios</u>

by Dejan Radjen

Chip Photo

Measurement Results

Swedish Foundation for Strategic Research

Continuous-Time $\Delta \Sigma$ **ADC** for LTE

Mattias Andersson

ADC output spectrum

3rd order, 3 bits, 288MHz clock (OSR=16) 0 -20 -40 [dBFS] · -60 -80 DAG DAG -100 $\mathbf{D}\mathbf{M}$ 10^{6} 10 Peak SNDR 69dB Frequency [Hz] Peak SNR 71dB 70 60 **SNDR 69dB** SNR, SNDR [dB] 50 40 6.2mA l_{vdd} 30 175fJ/conv step FOM 0.1mm² Area -10 -60 -40 -20 0 Input amplitude[dBFS]

Antennas and Propagation for Binaural Hearing Aids

By: Rohit Chandra, PhD student, Lund University

OBJECTIVES

- Investigating the possibility of establishing a wireless link between the binaural hearing aids in 2.45 GHz ISM band using miniaturized antennas.
- Comparison between a homogeneous phantom (SAM) and a heterogeneous phantom (Duke) for estimating the ear-toear link loss.
- Investigating the effects of the pinnas (protruding part of the outer ear) and the lossy skin on the ear-to-ear link loss
- Measurements to verify the effect of the pinnas

Ultra Low Energy Digital Circuit

Requirements

- Low Energy Dissipation
- Low Area
- Satisfactory Throughput
- Reliability

- <u>S.M.Yasser Sherazi</u>
- Joachim N. Rodrigues
- Henrik Sjöland
- Peter Nilsson

Design Space?

CIRCUIT

- Architectures?
- Technology Selection?
- Energy Min. Voltage?
- Switching Activity?

Analog Decoding In 65-nm CMOS

Low Power

Ш

High

Speed

11 11

Small

Area

П

п

<u>Reza Meraji</u> John B. Anderson Henrik Sjöland Viktor Öwall

Sub-threshold

region

Simple analog

multipliers

Parallel

continious time

processing

III

Energy efficient medium access scheme DCW-MAC scheme

by Nafiseh Seyed Mazloum

Duty-**C**ycled **W**ake-up receiver (WRx) **MAC** combines ultra lowpower WRxs and optimal duty-cycled listening.

Optimal architectural partition for LTE-A @ IMEC by Isael Diaz

- Maximizing Performance
 - What operations are to be placed in the Front End and what on the Baseband engine for optimal performance?
 - Multi-band filtering, Resampling, Compensation, FFTs, etc...

- Minimizing Power Consumption under efficient area constraints
 - Characterization of power consumption under the various LTE-A scenarios.

Minimizing OFDM Receiver Complexity with Sign-Bit Estimation Techniques by Isael Diaz

Standard	Fs	Current
LTE	31 MHz	0.52mA
DBV	10 avritz	0.18mA
WLAN	20 MHz	0.32 mA
WLAN [40MHz]	40 MHz	0.6 mA

SB-SNR Estimation:

- Same architecture as SB-Synch.
- Capable to distinguish between coarse SNR.

SB-Synchronization:

- Up to 90% area reduction from an 8-bit implementation.
- Low Power consumption down to 0.18mA per symbol for DVB-H.

Multibase Closure

by Isael Diaz, Chenxin Zhang, Joachim Rodrigues and Viktor Öwall

- 2 standard concurrently:LTE, WLAN and DVB-H
- Total area 5mm2, Infineon LP 65nm CMOS

- New transmitted concept presented for future multi standard terminals.
- Concepts have been proven by actual physical fabrication demonstrating the feasibility of the architecture.
- Functional verification of critical components is finalized, even though measurements of the entire still ongoing.

Faster-than-Nyquist signaling for improved bandwidth efficiency.

- Deepak Dasalukunte

Transmitter and receiver architectures of an FTN multicarrier system has been evaluated and a receiver has been implemented in ST 65nm CMOS. FTN has been showed to be feasable from a hardware perspective.

Detect multi-mode MIMO signal with smaller area and less power For LTE-A hand-held devices

Dept. of Electrical and Information Technology, Lund University, Sweden

Improved Matching Pursuit Algorithm and Architecture for LTE Channel Estimation

Johan Löfgren, Ove Edfors, and Peter Nilsson

Design	One Iteration	IDFT/DFT	IFFT/FFT	Full Estimate
Original	512	$\sim 614 \mathrm{K}$	$\sim 22.5 \mathrm{K}$	$\sim 96 K$
Proposed	300	720K	$\sim 27 \mathrm{K}$	$\sim 84 \mathrm{K}$

- Channel Estimation is important
 - Compressed Sensing and Matching Pursuit gives good estimate
- This work presents an improved
 Matching Pursuit algorithm
 - It is shown that large savings can be achieved by, counterintuitively, increasing the resolution

Reconfigurable cell array

4000 5700

by Chenxin Zhang

- Heterogeneous cell array
- Hierarchical routing network
- Centralized & Distributed cell configuration
- Task level hardware sharing
- A software-centric programming approach
- Algorithm-level exploration on one platform
 - Multi-standard OFDM coarse synchronization
 - 2x2 Cell array
 - Area: 0.479 mm² in 65 nm CMOS
 - Clock frequency: 534 MHz

Concurrency	Standard	accuracy		
Single-Stream	802.11a 13TE DVB-112K DVB-114K DVB-114K DVB-118K	4 hits 4 hits 4 hits 2 or Sign bit Sign bit	50 - 1.3 1.3 1.5	
Dual-Stream	802.11n & 802.11n 802.11n & LTE 802.11n & DVB-I12K LTE & LTE LTE & DVB-H2K	4 or 2 bits 2 bits 2 bits 2 bits 2 bits 2 bits 2 bits	1.8	
				רמרה מו

Distributed Antenna Systems

Hemanth Prabhu, Joachim Neves Rodrigues, and Ove Edfors

- Antennas (~100) may be grouped to form large arrays, or distributed in the environment as a sparse array.
- A central processing unit performs joint processing.
- Multiple FPGA's for highly parallel processing is channels is required.
- Suitability of CAL data-flow language is evaluated in an initial case study.

CAL Framework

Comparing Parabolic Synthesis with CORDIC

Erik Hertz and Peter Nilsson

Approximation of the logarithmic function with 15 bits accuracy

Synthesis Strategies in the Sub-V $_{\rm T}$ Region

Oskar Andersson*, S. M. Yasser Sherazi*, and Joachim Rodrigues* Pascal Meinerhagen°, and Andreas Burg°

Design space exploration

Sub-V_T sign-off verification

Switching activity and energy minimum voltage

*Department of Electrical and Information Technology, Lund University, Sweden °Institute of Electrical Engineering, EPFL, Switzerland

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

LUNDS UNIVERSITET Lunds Tekniska Högskola

Modelling of III-V Nanowire Transistors and Circuits

Goals

- Modelling of III-V nanowire transistors
- Evaluation of demonstrator circuits

Results

- Predictions of transistor and circuit performance
- Optimized nanowire transistor architecture

Nano Electronics Lund

Nanowire transistors for RF implementation

Goals

- Fabrication of III-V nanowire transistors on silicon
- **Development of LNA using** ulletnanowire transistors

Results

- Successful integration of InAs • nanowires on silicon
- High performance FETs with a • g_m of above 1 S/mm

Anil Dey, Nano Electronics, Lund University

15 nm InAs Nanowire MOSFETs

Goal

 Evaluate the scaling properties of InAs nanowires

Results

- $J_{ON} = 33 \text{ MA/cm}^2$ (Comparable to modern HEMTs)
- g_m = 1.8 S/mm

2011-11-02

InAs Nanowire Mixer Circuit Integration

Goal

- Integration of InAs NW single balanced differential mixer circuit
- Demonstrating performance advantageous compared to similar Si technology

Results

- Single and Array Vertical NW Transistor Performance
 - g_m 1 S/mm
 - f_t 20 GHz
 - f_{max} 30 GHz

Heterostructure nanowires for infrared photodetectors

Goals

- Fabricate InAs/InAsSb/GaSb p-i-n nanowires for photodetection up to 12 μm.
- Obtain better detectivity than planar devices due to low defect concentration as heterojunctions.

Results

- Photocurrent of a few hundred nA at 78K.
- Valence band offset between InAsSb and GaSb measured to be around 30 meV.

Nano Electronics Lund