Low Power III-V MOSFETs

Lars-Erik Wernersson

Electrical- and Information Technologies and Physics Department Lund University Sweden

Nano Electronics Lund

Lund Circuit Design Workshop

WWW: Wireless with Wires

InAs Nanowires

- High-speed digital and RF-circuits based on nanowire transistors
- Wrap-gates used to scale towards 10 nm L_g
- Optimize materials and device concepts
- How much do we gain by increasing g_m at low drive voltages (V_{dd}=0.5 V)?
- Can we reduce some "key capacitances" in the vertical geometry?

abricated mixer

Schematic cross-section

Nano Electronics Lund

Nano Electronics Lund

Transport Enhancement

Nano Electronics Lund

Transport Enhancement

Nano Electronics Lignd

Ultimate Transistor Performance

Lateral transistors 500 nm L_g Doping essential to reduces access resistance Max transconductance 1.8 S/mm I_d =8300 kA/cm² or 600 mA/mm Best g_m/g_o=10.4

Simulated data (tight binding) I_{on} =120 µA I_{on,exp} =30 µA

Nano Electronics Lund

High- κ on III-V Nanowires

InAs/HfO2 nanowire capacitors

XPS on InAs nanowires

Nanowire capacitors behave like planar InAs capacitors Temperature and frequency dependence Holes may play a role due to narrow gap

Less effective oxide reduction

InAs RF-transistors on 2" Si

Effect of InAs nucleation layer

Nano Electronics Lund

Buffer layer technology used for InAs layers on Si 4-6 nucleation layers Wafer patterning Uniform nanowire growth

Lund Circuit Design Workshop

Strategy to Reduce Capacitances

Close packing of nanowires to screen the electric fields

Internal capacitance low in the quantum limit, also including parasitics advantages are found

BENCHMARKING OF PARASITIC CAPACITANCES										
$(\mathrm{aF}/\mathrm{\mu m})$		f_t -design		f_{max} -design ^a		ITRS ^b				
Node	L_g	$C_{gg,i}$	$C_{gg,t}$	$C_{gg,i}$	$C_{gg,t}$	$C_{gg,i}$	$C_{gg,t}$			
35 nm	47.1 nm	364	611	364	741	766	967			
22 nm	29.6 nm	285	514	285	655	73 9	980			
16 nm	21.5 nm	235	511	235	617	675	888			
12 nm	16.1 nm	218	449	218	590	501	716			
8 nm	11.1 nm	127	403	127	509	378	562			

TABLE I

^a f_{max} -optimized design with double gate electrode.

^b Interpolated data from the ITRS roadmap.

InAs RF-transistors on 2" Si

InAs RF-transistors on 2" Si

Measured High-Frequency Properties

 f_t and f_{max} limited by parasitics Intrinsic f_t about 200-300 GHz Non-ideal U and S11: High- κ ?

Lund Circuit Design Workshop

InAs Circuits on 2" Si

Good wafers: 80% yield Area: 2000x6000 µm²

First test circuit: Balanced mixer

Design with 52 nanowire transistors Nanowire resistors Designed for 1 GHz input

InAs Circuits on 2" Si

Nano Electronics Lisud

Benchmarking III-V MOSFETs

Technology	Drive current (mA/mm) V _{ds} =0.5V	Trans- conductance (mS/mm) V _{ds} =0.5V	L _g (nm)	SS (mV/dec)
Lund DC NW Transistors 2008	330	520	50	88
Lund RF NW Transistors 2011	140	1000	250	-
Lund Planar Transistors 2011	2000	1900	55	187
Intel FinFETs 2010	100	500	70	120
Purdue FinFETs 2009	150	200	100	170
Intel Planar 2009	550	1750	75	100
UCSB Planar * 2009	950	450	200	550

New Device Concepts

Low-Frequency Noise

Nano Electronics Liste

Hooge's Parameter: **4.2x10**⁻³ The Hooge's parameter has a relatively low value.

Normalized 1/f Noise Figure: 7.3x10⁻⁷ Hz⁻¹ Persson et al IEEE EDL, 31, 428 (2010)

Lund Circuit Design Workshop

Journal Publications 2010-2011

- 23 Journal Papers 2010-2011
- **1 Invited in Proceedings of IEEE**
- **2 IEEE Trans Microwave Theory and Techniques**
- **2 IEEE EDLs/Electronics Letters**
- **1 IEEE MWCL**
- 7 APLs/NanoLetters
- **3** patent applications filed

Nano Electronics

The Nanoelectronics Group

Professors Lars-Erik Wernersson Erik Lind*

Post. Doc Johannes Svensson

Ph.D.-students Mats Ärlelid Mikael Egard* Mattias Borg* Karl-Magnus Persson Anil Dey Sofia Johansson* Martin Berg Kristofer Jansson Sepideh Gorji Ghalamestani* Lars Ohlsson