

2011/12 Cellular IC design – RF, Analog, Mixed-Mode

Mohammed Abdulaziz, Mattias Andersson, Jonas Lindstrand, Xiaodong Liu, Anders Nejdel Ping Lu, Luca Fanori Martin Anderson, Lars Sundström, Pietro Andreani

Department for Electrical and Information Technology Lund University

Overview

- A reconfigurable channel-select filter
 - Mohammed Abdulaziz
- A continuous-time $\Delta\Sigma$ A/D converter
 - Xiaodong Liu
- A filtering continuous-time $\Delta\Sigma$ A/D converter
 - Mattias Andersson
- PA / TX circuits
 - Jonas Lindstrand
- A noise-shaping time-to-digital converter
 Ping Lu

Overview – II

- Linear RX front-end (previous presentation)
 - Anders Nejdel (SSF DARE project)
- Highly efficient class-C VCO (next presentation)
 Luca Fanori (FP7 DRAGON project, SoS)
- RX BB for carrier aggregation (not included)
 Martin Anderson, Lars Sundström

A reconfigurable channel-select filter (SSF DARE project)

Mohammed Abdulaziz

- Limit unwanted signals falling close to the baseband
- Relax the dynamic range requirements of the ADC

Project goals and challenges

- Linearity vs. noise control via digital control word
- Break the linearity vs. noise trade-off with a linearization scheme

- R_Q : tunes the Q factor of the filter
- C: selects the operating band
- R1, R2 and R3: compensate process variations

Chip photo and Simulations

Taped out in June 2012, under measurement

Parameter	Value		
Process Technology	65nm CMOS		
Response	Chebyshev		
Order	5 th		
Power Supply	1.2 V		
Current Consumption	3.2 mA		
Input Referred Noise	38nV/↓Hz		
IIP3	24 dBm		
Frequency Bands	20/15/10/5/3/1.4	4 MHz	
Tuning Range	±40%		

Complete RF front-end (LNA+Mixer+Filter) for Oct. 2012 TO

Wideband A/D converters (SSF DARE project)

Xiaodong Liu

- 3rd order, 4-bit, f_s=640MHz, BW=20MHz (OSR=16)
- Goal
 - To meet the bandwidth requirement of LTE Advanced standard (20MHz to 100MHz)
 - To demonstrate the feasibility of reducing power consumption while maintaining a good SNR by means of digital enhancement techniques
- Approach
 - Continuous-time Delta-Sigma modulator is attractive for BW beyond 20MHz
 - Pipelined A/D is a good candidate for the LTE Advanced maximum bandwidth of 100MHz

Delta-Sigma A/D – system level design

Circuit implementation

- Active-RC op-amp filter with feedforward gm compensation in the op-amp
- Current-steering DAC with non-return to zero (NRZ) pulses
- Dynamic element matching to mitigate distortion effect of mismatch in the DAC elements
- TO in March 2013

Continuous-Time $\Delta \Sigma$ ADC for LTE (FP7 DRAGON project, SoS)

Mattias Andersson

3rd order, 3-bit, f_s=288MHz, BW=9MHz (OSR=16)

Tayloring the feedback pulses for the three DACs, the 4th DAC around the quantizer is avoided!

Design details

RZ pulses in DAC3 reduce sensitivity to loop delay Loop delay compensation (DAC4) can be omitted Quadrature clock phases assumed (available "for free" in any radio RX)

Measurement results

Lund University - Department for Electrical and Information Technology

Chip photograph and performance summary

To be presented at the A-SSCC 2012

Parameter	Value
BW	9MHz
OSR	16
SNDR	69dB
l _{vdd}	6.2mA
FOM	175fJ/conv step
Area	0.1mm ²

Improved version with added filtering action: TO in June 2012 (not yet received), and again in Oct. 2012

Power Amplifier in 65nm CMOS (VINNOVA, SoS)

Jonas Lindstrand

Chip photograph and performance

LO generation (VCO, active-PPF, 3/2 divider)

LO generation – performance

Models for ED-MOS in STM 65nm CMOS

- Increase PA output power
 - Use ED-MOS transistors with high breakdown voltage
- No real RF model is supplied from CMP
- We will build our own RF MOS model
- Together with Prof. Christian Fager at Chalmers

700-900MHz Impedance Tuner in STM 65nm CMOS-SOI

- Compensate for the antenna mismatch
 - Up to a VSWR of 4.5
- Low insertion loss (IL)
 - Less then 1dB with off-chip inductor Q of 50 for $L_{s,1}$ and $L_{s,2}$
- 4-bit switched capacitor banks (C_{p,1}, C_{p,2}, C_{p,3})
 - Can handle 30dBm of TX power at an antenna VSWR of 4
- Taped-Out in June 2012

 $L_{s,1}$

C_{p,1}才^{4 Bits}

Still waiting for fabrication...

4 Bits

 $L_{s,2}$

 $1x1mm^2$

make.believe

SON

Time-to-digital converter (VR, SSF DARE, EU Marie Curie)

TDC in digital PLL replaces phase-frequency detector of analog PLL

Smaller TDC-cell delay (Δt_{delay}) → lower in-band PLL noise

Ring-oscillator TDC

 \geq Ring-Oscillator TDC \rightarrow large detection range with few stages

Varnier TDC and GRO TDC

- $\blacktriangleright \text{Vernier TDC} \rightarrow \tau_1 \tau_2 = \Delta t_{\text{delay}} < \tau_1 (\tau_2)$
 - However, a very large number of stages are required

Vernier + gated ring oscillator

 \blacktriangleright New TDC \rightarrow combines Vernier + GRO

High Vernier time resolution + First-order noise shaping

Chip photograph and results of VGRO TDC

Area	0.027mm ²
Process	90nm CMOS
Current (Supply)	3mA (1.2V)
Vernier resolution	~5ps
Effective in-band resolution (OSR= 16)	~3ps

Presented at ESSCIRC 2011

Invited and published in JSSC July 2012

Two-dimensional VGRO TDC

Vercesi et al, JSSC Aug. 2012

- Developed from VGRO TDC and 2-D Vernier (Univ. of Pavia, Italy)
- Many more signal pairs used than in 1-D VRGO TDC → enhanced detection range
- Reduce latency time
- Under measurement, to be
 presented at NORCHIP 2012

Chip photo and simulations

