

Cellular Electronics – Baseband Processing

Liang Liu

Dept. of Electrical and Information Technology Lund University, Sweden

Liang.liu@eit.lth.se

Outline

- The team
- The researches
 - DFE: filtering for CA/sign-bit processing
 - Learning the channel: channel estimation for LTE
 - The matrix: matrix decomposition/inversion
 - Recovering the signal: multi-mode MIMO detection
 - Multi-task platform: reconfigurable cell array
 - Going faster than Nyqvist: chip measurement
- Conclusion

The Team - Digital ASIC

Prof. Peter Nilsson

Ph.D. Stud. Oskar Andersson

Ph.D. Stud.

Reza

Meraji

Ph.D. Stud. Anil Dey

Ph.D. Stud.

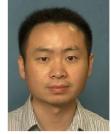
Mohammadi

Babak

Erik Larsson

Ph.D. Stud. Isael Diaz

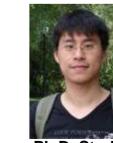
Ph.D. Stud. Hemanth Prabhu


Assist. Prof. Joachim Rodrigues

Ph.D. Stud. Rakesh Gangarajaiah

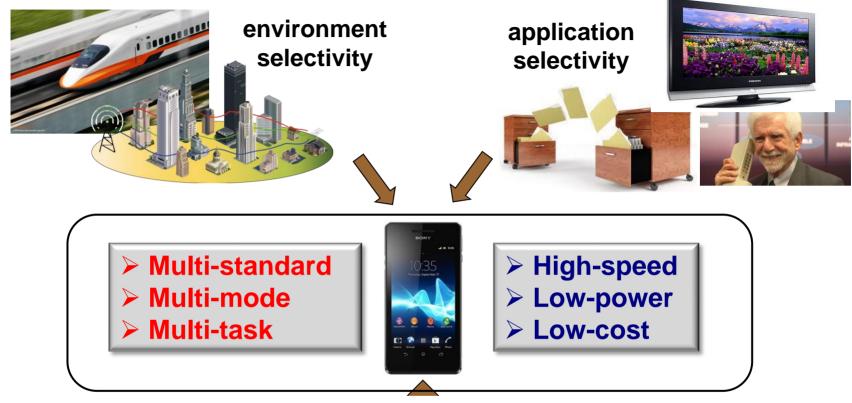
Ph.D. Stud. Yasser Sherazi

Post doc Liang Liu



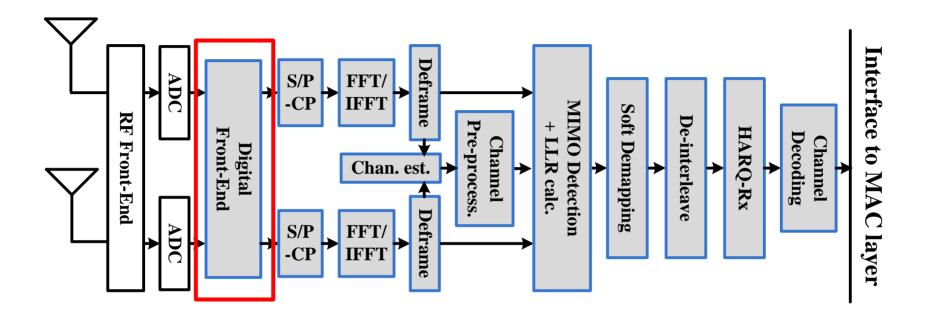
Lic. Erik Hertz

Ph.D. Stud.

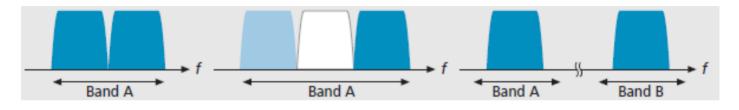

Ph.D. Stud. Johan Löfgren

Ph.D. Stud. Chenxin Zhang

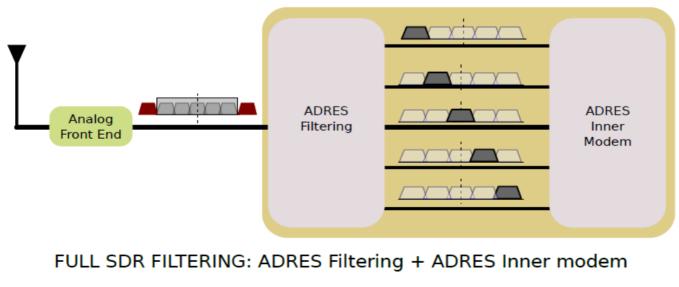
Research Motivations & Objective


Our Focus: integrate the demands in an efficient hardware

DFE: Digital Front-End



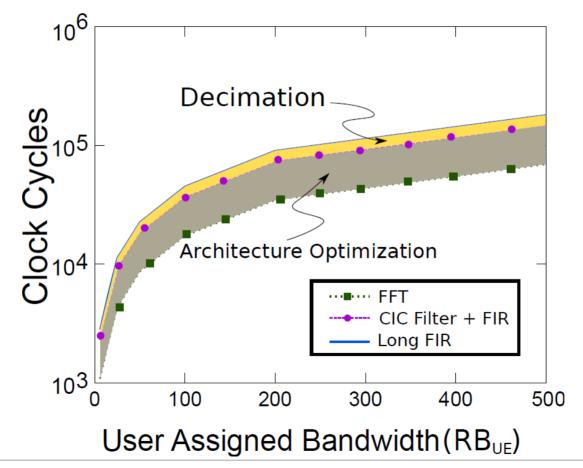
Selective-channelization for LTE-A carrier aggregation (together with IMEC)


NAM-CALLAND

Channelization for LTE-A Carrier Aggregation

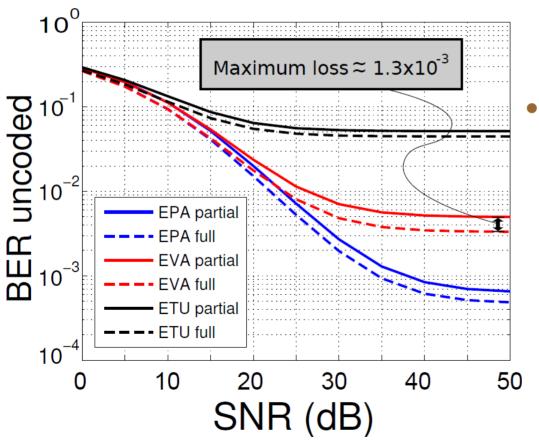
- LTE-A Carrier Aggregation
 - CA scenarios: intra-band continuous, intra/inter-band non-continuous
 - CC bandwidth: 1.4MHz (6RB)~20MHz (100RB)

Software Defined Radio as Potential Solution (ADRES)



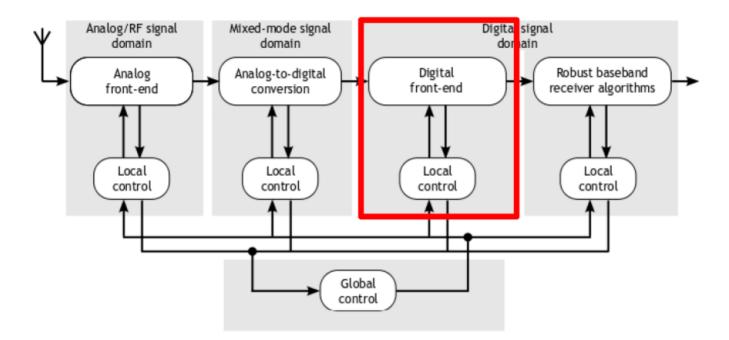
Filtering Methods

- Candidate filtering method: Long FIR Filter/CIC+FIR Filter/FFT
- Power analysis (on ADRES)
 - Clock cycles as metric
 - FFT is the best due to architectural optimization



Performance Analysis

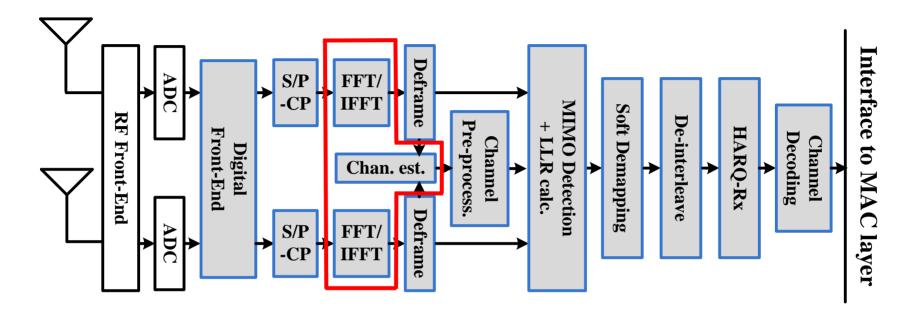
- Channelization schemes
 - *Partial filtering*: only the user assigned bandwidth is extracted
 - Full filtering: the entire transmission bandwidth is extracted



Performance analysis

- EPA (2km/h), EVA (30km/h), ETU(130km/h)
- Marginal performance loss due to CE error
- Complexity saving is up to 70%

Continue DFE in DARE

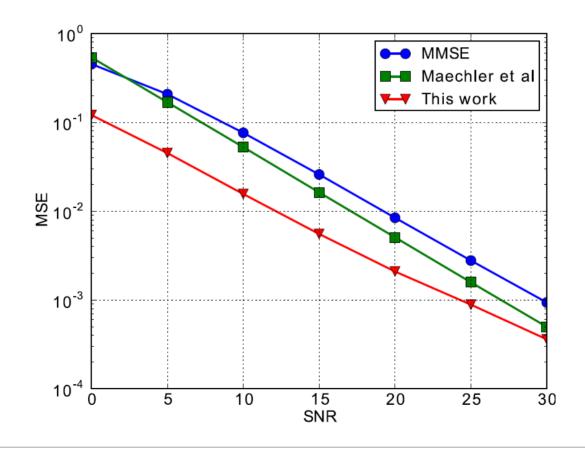


Michal Stala Isael Diaz

- Imperfections with carrier aggregation
- Scalable DFE for both high-end LTE devices and low-end M2M devices
- Together with Ericsson

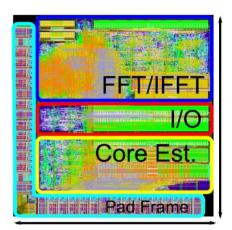
Channel Estimation

Improved matching pursuit for LTE channel estimation (results update from LCDWS 2011)


Johan Löfgren

Improved Matching-Pursuit for LTE CE

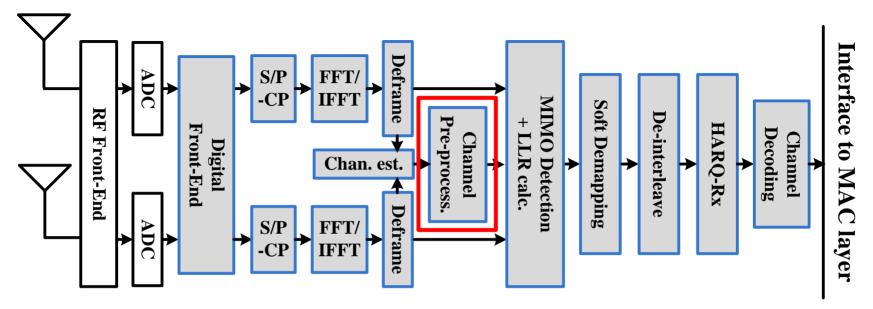
- MP with three modifications:
 - L¹-norm energy calculation, SNR-depended stopping scheme, and smartly increased system resolution
- Better performance than frequency-domain MMSE and original MP



Hardware Implementation Results

- ST 65nm CMOS including FFT/IFFT & core estimator
- Better accuracy with compatible hardware & higher speed

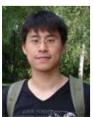
	This work	[9]	[22]	
Technology [nm]	65	180	65	
Area [mm ²]	0.13/0.29 ⁽¹⁾ 1		0.1	
Norm. Area [mm ²]	0.13/0.29(1)	0.13	0.1	
Frequency [MHz]	125	154	200	
Init. [us]	7.62	336	N/A	
Update [us]	0.62	3.62	N/A	
Estimates in 1ms	10.3	1.6	8	


ARO

(1) Without/With FFT/IFFT

[9] P. Maechler, et.al., "Matching pursuit: evaluation and implementation for LTE channel estimation," *IEEE ISCAS, May 2010.*

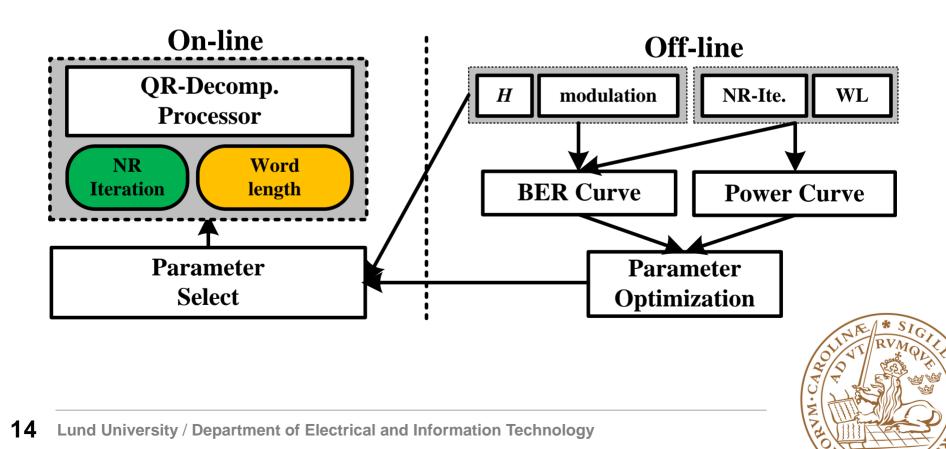
[22] M. Simko, et.al., "Implementation aspects of channel estimation for 3gpp LTE terminals," *European Wireless Conference, April 2011*


Energy-Efficient Channel Pre-Processing

Link-adaptive QR-decomposition using Householder transformations

Rakesh Gangarajaiah

Energy efficient channel preprocessor using partial update scheme


0

Z

Chenxin Zhang Hemant Prabhu

Link-Adaptive QR-Decomposition

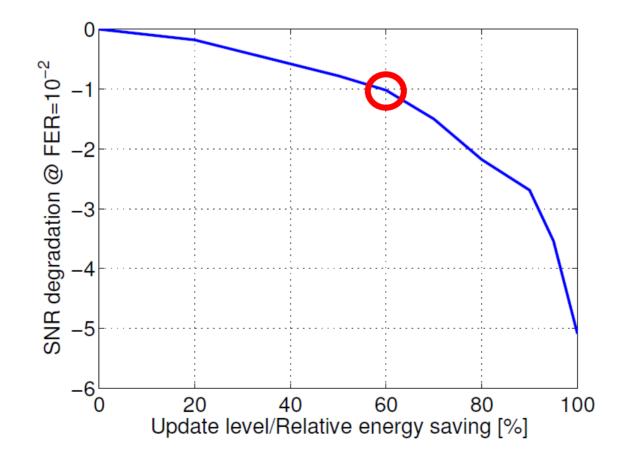
- Basic idea: dynamically adjust parameters energy-efficient mode according to H and modulation scheme, with constraint: BER requirement is satisfied
- Parameters:
 - Newton-Rhapson *iteration number*
 - Word-length of the processor

Power Reduction Using Partial Channel Update

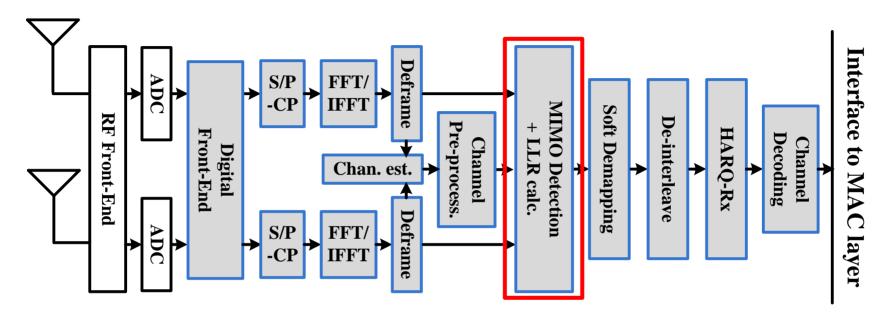
- Full channel update (complete QRD)
 - Needed to track channel change
 - Expensive in terms of power

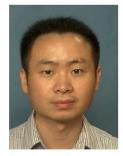
	QRD-1 (TCAS1-11)	MIMOD-1 (ISSCC-09)
Gate Count	111K	114K
Throughput (SC/s)	12.5M	28.125M
Energy (nJ/SC/s)	12.76	5.37

- Partial channel update (approximated QRD)
 - Only upper triangular **R** is updated as:


$$oldsymbol{\hat{R}'_i} = oldsymbol{Q}_{i-t}^H oldsymbol{H}_i$$

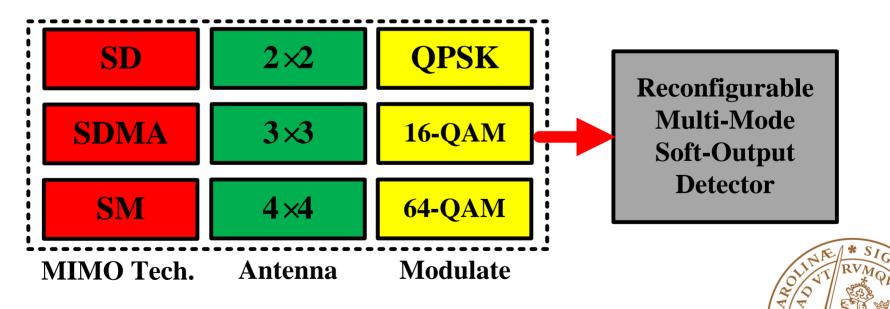
 Dynamically switch between full and partial update according to timecorrelation; full update in low-correlated channel


Performance Evaluation


- LTE downlink with 4×4 64-QAM MIMO under EVA-70 channel
- Performance-power tradeoff by adjusting patial update ratio
- Saving 60% power with 1dB performance loss

MIMO Detection

Multi-mode MIMO signal detection with soft-output


Liang Liu

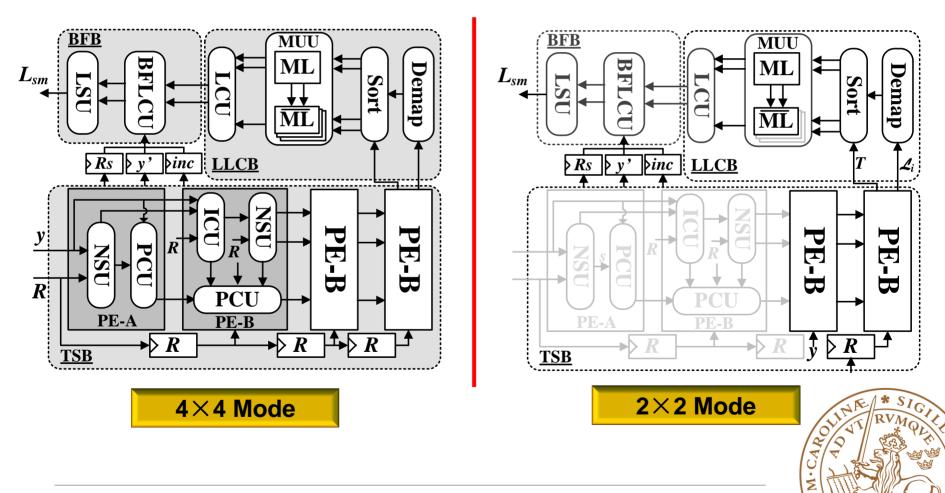
Multi-Mode Soft-Output MIMO Detection

Soft-output MIMO detection

Multi-mode MIMO detector

NZ

MIMO Techniques – Unified Algorithm

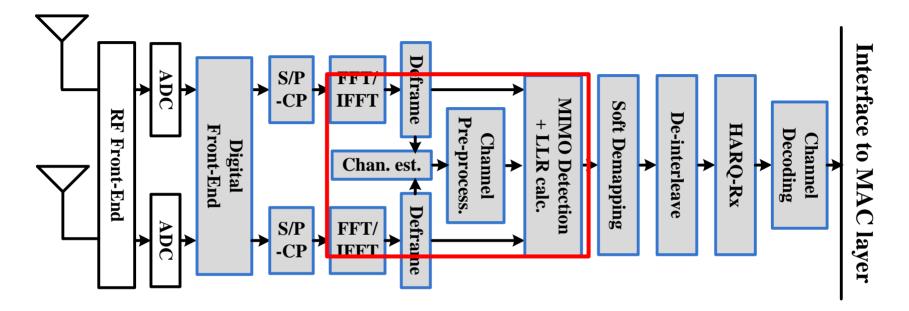

- Algorithms share most of the operations
 - SM: FSD tree-search with bit-flipping
 - **SDMA**: FSD tree-search with detection reordering
 - **SD**: Real-valued MAP decoder using bit-flipping

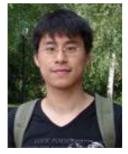
Operations		MIMO Techniques			
		SM	SDMA	SD	
Pre Proc.	H decomp.	V	V		
re oc.	H permut.	V	V		
S	Node selection	V			
tree search	Interf. cancel	V	V		
э С	Euclidean distance	V	V		
LLR calc	Sorter	V			
ר <u>.</u> ר:	List LLR calc.				
	Bit-flipping	V			

N

Antenna Configurations – Scalable Architecture

- Example: SM detector
 - TSB: Activate different stages according to antenna configuration
 - LLCB/BFB: Close half of the LLR/BFB calculation units




Results

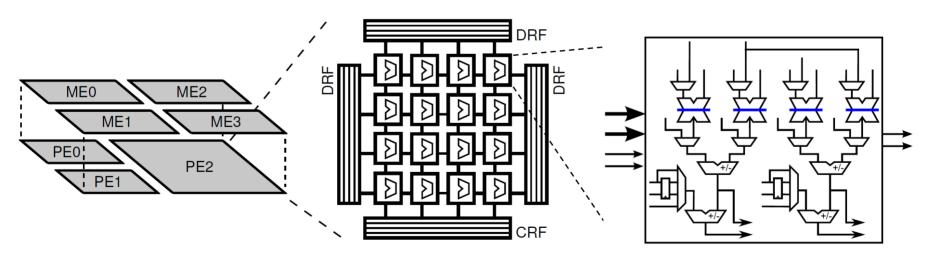
- Post-layout results with ST 65nm CMOS technology
- Supports the most MIMO modes
- Consumes the least hardware and energy

	TVLSI' 07	TVLSI' 11	JSSC' 12	ISCAS' 10	This Work
MIMO Modes	SM	SM	SM	SM	SM/SD/SDMA
Antenna Size	4×4	4×4	4×4	4×4	4×4
Modulation	64-QAM	64-QAM	64-QAM	64-QAM	64-QAM
Algorithm	Soft-output	Soft-output	SISO	Soft-output	Early-pruned FSD
Algorium	K-best	best-first	MMSE-PIC	K-best	with bit-flip
Process Technology	0.13 μm	65 nm	90 nm	65 nm	65 nm
Max. Clock Rate	270 MHz	333 MHz	568 MHz	833 MHz	167 MHz
Throughput	8.57 Mb/s	83.3 Mb/s	757 Mb/s	2 Gb/s	1 Gb/s
Core Area	2.38 mm ²	N/A ²	1.5 mm^2	0.57 mm ²	0.25 mm ²
Gate Count	280 kG^a	64 kG^a	410 kG ^b /160 kG ^a	298 kG a	83.7 kG ^a
Hardware Efficiency kG/(Mb/s)	32.67 ^a	0.77 ^a	0.21 ^a	0.15 ^a	0.084 ^a
Power Consumption	94 mW	11.5 mW	189.1 mW	280 mW	59.3 mW @ 1.2 V
	@ 1.2 V	@ 1.0 V	@ 1.2 V	@ 1.3 V	(SM mode)
Normalized Power Consumption	N/A	16.6 mW	136.6 mW	238.6 mW	59.3 mW
Normalized Energy Consumption	N/A	199.2 pJ/bit	180.4 pJ/bit	119.3 pJ/bit	59.3 pJ/bit

Reconfigurable Cell Array (RCA)

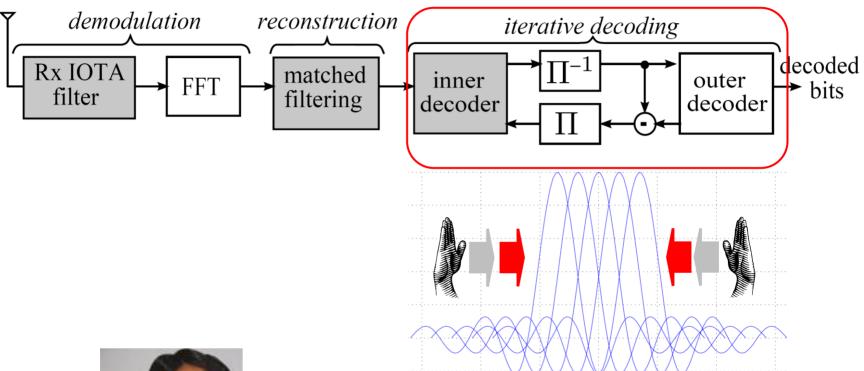
Mapping channel estimation, QRD, and MIMO detection in LTE-A on a reconfigurable platform

Chenxin Zhang


Algorithms

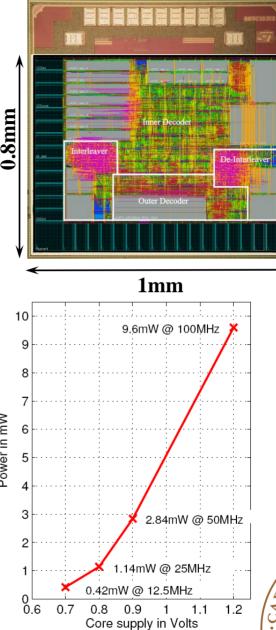
- Operations push to vector-level
 - Improve data parallelism and instruction parallelism
 - Easily mapped to vector processor with high hardware utilization
- Algorithms
 - Channel estimation: Robust MMSE with sliding window
 - QRD: Sorted-QRD using modified Gram–Schmidt processing
 - MIMO detection: MMSE with node perturbation

Mathematical operations		Ch. Est.	Ch. Pre- proc.	Signal Det.
Vector Opt.	Vector-vector			
	Scalar-vector			
	Matrix-vector			\checkmark
	Vector permutation		\checkmark	
Scalar Opt.	SQRT/DIV			
	Node selection			


Platform

- Heterogeneous cell array with vector operation
 - RISC elements (PE0, PE1): task scheduling, cell configuration, and conditional & scalar operations.
 - *Multiple memory banks*: to improve bandwidth and access flexibility
 - Dataflow processor PE2 (DPE): 2D FUs for vector-based operations.

Faster Than Nyqvist Signaling


Iterative decoder for multi-carrier faster than Nyqvist system (measurement result update from LCDWS2011)

Z

Deepak Dasalukunte

Chip Measurement Results

Tech.	ST 65nm CMOS	
Die Area	0.8 mm ²	
Gate Count	250k	
Total memory	14.68kB	
IO & core supply	1.8v & 1.2v	
Throughput	1Mbps@8 iter	
Power	9.6mW	
Energy	6nJ/sym/iter	

FTN is a Practical Technique

- Lack of existing hardware implementations for FTN decoder
- To see how FTN decoder fits into exsting systems by referring a reconfigurable FFT and a Turbo decoder in 65nm CMOS

Functionality	FTN iterative decoder	128-2048 point FFT	3GPP LTE Turbo Decoder
	ESSCIRC 2012	JSSC 2012	DATE 2010
Technology	65nm	65nm	65nm
Core Area	0.567 mm ²	1.375 mm ²	2.1 mm ²
Gate count	250k	1100k	-
Total Memory	14.68kB	6.14kB	54% of area
Power	9.6mW (@ 1.2V, 100MHz)	4.05mW (@ 0.45V, 20MHz)	300mW (@ 1.1V, 300MHz)

M N N

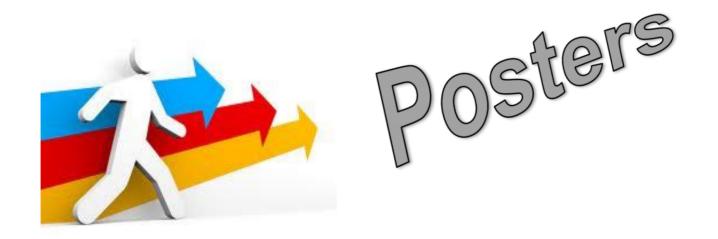
Publications (2011-Present)

Journal

- [1] 'Hardware architecture of IOTA pulse shaping filters for multicarrier systems', IEEE TCAS-I
- [2] 'Area-efficient configurable high-throughput signal detector supporting multiple MIMO modes', IEEE TCAS-I.
- [3] 'Low complexity likelihood information generation for spatial-multiplexing MIMO signal detection', *IEEE TVT*
- [4] 'Multicarrier faster-than-Nyquist transceivers: hardware architecture and performance analysis', IEEE TCAS-I

Conference

- [5] 'Mapping channel estimation and mimo detection in Ite-advanced on a reconfigurable cell array', IEEE ISCAS
- [6] 'A unified multi-mode MIMO detector with soft-output', IEEE ISCAS
- [7] 'A 0.8 mm2 9.6 mW implementation of a multicarrier faster-than-nyquist signaling iterative decoder in 65nm CMOS', *IEEE ESSCIRC*
- [8] 'Reconfigurable cell array for concurrent support of multiple radio standards by flexible mapping', IEEE ISCAS
- [9] 'Detecting multi-mode MIMO signals: algorithm and architecture design', IEEE ISCAS
- [10] 'Improved matching pursuit algorithm and architecture for LTE channel estimation', IEEE ISCAS
- [11] 'Analysis of a novel low complex SNR estimation technique for OFDM systems', IEEE WCNC
- [12] 'Highly scalable implementation of a robust MMSE channel estimator for OFDM multi-standard environment', *IEEE WSPS*
- [13] 'Low complexity soft-output signal detector for spatial-multiplexing MIMO system', IEEE PIMRC
- [14] 'Unified multi-mode signal detector for LTE-A downlink MIMO system', APSIPA-ASC
- [15] 'Design and implementation of iterative decoder for faster-than-Nyquist signaling multicarrier systems', IEEE ISVLSI
- [16] 'Improved memory architecture for multicarrier faster-than-Nyquist iterative decoder', IEEE ISVLSI
- [17] 'Complexity analysis of IOTA filter architectures in Faster-than-Nyquist multicarrier systems', IEEE NORCHIP


Z

[18] 'On hardware implementation of radix 3 and radix 5 FFT kernels for LTE systems', IEEE NORCHIP

Conclusions

- Support multi-standard, multi-mode, and multi-task
- High-speed, good performance with energy & area-efficiency
- Co-optimize system schedule, algorithm, and hardware
- Link-adaptive signal processing
- Scalable ASICs & reconfigurable cell array
- LTE/LTE-A as driving applications
- Post-layout simulation & chip measurement

