

A Linearized 0.7 to 3 GHz Receiver Front-End

Anders Nejdel

Henrik Sjöland Markus Törmänen

2012-10-04

Outline

- Background information
- Circuits,
- LNA, Mixer, Prescaler
- Measured results
- Final remarks

Why is there a need for more linear circuits?

More communication standards

- GSM
- WCDMA
- Bluetooth
- WLAN
- Radio
- GPS
- LTE
- ...

More communication standards, cont.

• More focus on wideband receivers

More communication standards, cont.

- More focus on wideband receivers
- Remove bulky components such as SAW-filter
- A lot of interferers at the receiver input
- Intermodulation

Circuits implemented in this system

• Part of SSF Digitally Assisted Radio Evolution (DARE)

- More wideband load
 - Resistive

Mixer

LO+

LO-

Inverter-based buffer

Measurements Results

Input matching and gain

RF Gain

Noise figure and gain

Noise figure vs. RF

IIP3

IIP3, cont.

Performance summary

	Value
Power consumption LNA + Mixer	4.38 mA from 1.5 V supply = 6.6 mW
Maximum voltage gain	20 dB @ 1.5 V, 22.5 dB @ 1 V, 24 dB @ 0.85 V
Bandwidth	0.7 to 3 GHz
Noise Figure	Below 5.5 dB @ 1.5 V, Below 4.2 dB @ 0.85 V
IIP3 (In-band)	+4 dBm (2.5 dB improvement)
IIP3 (Out-of-band)	+10 dBm (3.5 dB improvement)

Final remarks

- Wireless Receiver Front-End implemented in 65 nm CMOS
- Feedback in LNA can be used to:
 - improve linearity with feedback transistors in subtreshhold,
 - improve gain with feedback in the active region
- Bootstrapped Mixer to increase performance
- Published in Springer Analog Integrated Circuits and Signal Processing vol. 73 2012

Thank you for your attention!

Swedish Foundation for Strategic Research

