65-nm Semi-Custom Sub-Threshold Memories

Oskar Andersson, Babak Mohammadi, Yasser Sherazi, and Joachim Rodrigues

Department of Electrical and Information Technology, Lund University, Sweden

65-nm Semi-Custom Sub-Threshold Memories

- This work done in cooperation with EPFL, Switzerland:
 - Pascal Meinerzhagen, Andreas Burg

Motivation

ULV/ULP biomedical implants and wireless sensor nodes

Very stringent power budget, but only low speed requirements

Aggressive V_{DD} scaling leads to **subthreshold** (sub- V_T) operation

Cardiac pacemaker J. Rodrigues, Keynote, PATMOS'11

Memories consume dominant area & power share [ITRS'11]

Leakage-power during standby may dominate overall power budget

Typical memory requirements:
▶ Robust sub-V_T operation
▶ Ultra-low leakage
▶ Speed is secondary concern

Motivation

- Commercial SRAM memory compilers use 6T bitcell
- > Not reliable in sub- V_{T} domain w/o level-shifters
- Fullcustom sub-V_T SRAM designs with 8T, 10T, ... 14T bitcells and R/W assist techniques
- > High design effort, no design automation, high leakage currents

Our solution:

- Fully automated standard-cell based memory (SCM) compilation flow
- Single custom-designed standard cell to minimize all major leakage contributors in SCM array <u>and</u> peripherals
- > Fill the gap of missing/bad sub- V_{T} memory compilers
- Ensure high robustness
- Reduce area cost for storage capacities smaller than a few kt

Outline

- 1. Architectural choices for sub- V_{T} operation
- 2. Custom-designed low-leakage 3-state-enabled latch
- 3. 4kb low-leakage SCM test chip
- 4. Silicon measurement results
- 5. Comparison with prior-art sub- V_{T} memories
- 6. Conclusions

Best Architectural Choices for Above- and Sub-VT

- Write Logic
- Clock-gates (b): smaller and less power than FF (a)

Read Logic

- Above-VT
 - ✓ Muxes (c): faster, power efficient
- ➢ Sub-VT
 - ✓ 3-state (d): less leakage
- Array of Storage Cells
- Latch arrays smaller than FF arrays, but longer write-address setup time

Valid for different technology nodes

Meinerzhagen *et al.*, MWSCAS'10; Meinerzhagen *et al.*, **JETCAS'11**

Lund University / SOS Workshop / Oskar Andersson / 2012-10-03

6

Low-Leakage Latch with Tri-State Output

Static latch: transmission-gate, 3-state buffer, or multiplexer

Best practice for low leakage

- 1. Lowest number of V_{DD} -GND paths
- 2. Highest resistance
- 3-state
- Stacking & stretching
- 3-state output

Stacking factor: max 2

Channel length stretching: 1.5L_{min}

All dominant leakage contributors are minimized by designing only 1 custom standard-cell

Architecture of low-leakage 4kb SCM

- Write logic uses clock-gates
- > 3-state buffers used for read operation are integrated in low-leakage latch

4kb SCM Test Chip in LP-HVT 65nm CMOS

Chip microphotograph and zoomed-in layout picture Area cost of 12.7 μ m² per bit (including peripherals)

Scan-chain test interface

Functionality verification: W/R random and checker-board patterns

Oven to control temperature: 27 or 37° C

Static Noise Margin

Static noise margin (SNM) of latch in non-transparent phase

1k-point Monte Carlo simulations

Minimum data-retention voltage is 210mV

MEASUREMENTS

Silicon Measurements: V_{DDmin} for data retention is 220mV

Silicon Measurements: V_{DDmin} for W/R is 420mV

Low-leakage 3-state read logic limits V_{DDmin} for R/W

Read 420mV

Write 300mV

Measured minimum V_{DD}

Below 420mV, read-failures appear column-wise

Silicon Measurements: Energy is 14 fJ/bit-access

Measured energy per bit-access performed at maximum speed

Measured energy minimum is 14fJ/bit at 500mV, 110kHz

Outlook: segmented RBLs for Faster Read

- Limit number of bitcells on each RBL segment
- Implement backend of read mux with static CMOS muxes

16

Lund University / SOS Workshop / Oskar Andersson / 2012-10-03

Silicon Measurements: Leakage Power is 500fW/bit

At V_{DDhold} =220mV, data is correctly held with a **leakage power of 425-500fW per bit** (best and worst out of 4 measured dies)

At 37°C (biomedical implants)

Higher leakage current thus higher operational frequency

17

Comparison with Prior-Art Sub-V_T Memories

Benefits of designing 1 custom standard cell

Leakage power reduced by 50% (at reduced area) w.r.t. commercial standard cell latch [Meinerzhagen et al., JETCAS'11]

Considered work: Full macro, measured, 65nm node

	[1]	[2]	[3]	[4]	This work
V _{DDmin} [mV]	350	250	380	700	420
V _{DDhold} [mV]	250	250	230	500	220
E _{tot/bit} [fJ/bit]	55 (0.35V)	86 (0.4V)	54 (0.4V)	-	14 (0.5V)
P _{leak/bit} [pW/bit]	-	6.1	7.6 (0.3V)	6.0,1.0 ^a	0.5
Area [bits]	32 kb	64 kb	256 kb	1 Mb	4 kb

^a Leakage-power of bitcell only.

[1] **STM**: Clerc et al., ESSCIRC 2012, [2] **MIT**: Sinangil, Verma, and Chandrakasan, [3] **MIT**: Calhoun and Chandrakasan, JSSC 2007; JSSC 2009; [4] **Intel CRL**: Wang et al., JSSC 2008;

- Lowest leakage-power/bit ever reported in 65nm CMOS
- Lowest active energy/bit-access ever reported in 65nm CMOS

[D. Sylvester, ISCAS'11] has lower leakage power in 180nm CMOS

Conclusions

Need for robust sub- V_{T} memories in ULP/ULV systems

Ultra-low leakage, relaxed speed requirement

Fully automated standard-cell based memory compilation flow

- > Fill gap of missing/bad sub- V_{T} memory compilers
- Robust
- Area-efficient for small storage capacities of several kb

Adding 1 custom-designed standard-cell to commercial library

> Attacks all major leakage contributors of SCMs, including peripherals

3-state read logic limits W/R $V_{\rm DDmin}$ and read-access time, but satisfies ambition of ultra-low leakage power and access energy

Segmented RBLs improve read speed by >10X at low area and leakage overhead

Among all silicon-verified macro memories in 65nm CMOS

Lowest leakge-power/bit, and lowest energy/bit-access

Where is the border between SRAM and SCM?

Thank you for your attention!

Q & A

Acknowledgements:

- ST Microelectronics for manufacturing
- Swedish VINNOVA Industrial Excellence Centre
- Swedish Vetenskapsradet
- Swiss National Science Foundation

