

III-V MOSFETs for RF Applications

SIGI

LARS-ERIK WERNERSSON

and officersity / Dept. Of Electrodificition from alongy > December 0, 2012

Current Trends in Device Scaling

Current Trends in Device Scaling

Transport Enhancement

- III/V MOSFETs are considered for integration in digital logic
- III/V MOSFETs may have advantages for RF-applications
 - **Gate isolation**
 - Single supply voltages
 - Reduced Power Consumption (quantification needed)
- Drive current is limited by the access resistance
- Scaling scenarios targets R_{access} of 145-228 $\Omega\mu$ m at the15 nm node
- => Need for regrown (MOCVD) source and drain contact layers.

Outline

- Motivation
 - MOSFET design criteria
- DC results
- RF characterisation
- Wavelet Generators (mm-Wave Circuits)
- Summary

 R_{on} =199 $\Omega\mu m$, max I_{d} =2.0 mA/ μm , max g_{m} =1.9 mS/ μm

S-parameter Characterization

- L_g =55 nm, W_g =21.6 µm device characterized to 70 GHz
- Modeling accounts for impact ionization and border traps

S-parameter Characterization

Small-signal model includes effects related to impact ionization, band-to-band tunneling and conduction via border traps

III-V MOSFET/RTD Integration

Co-integration of InP/InGaAs MOSFET and RTD on SI InP Substrate

2nd Generation Wavelet Generator Nano

The MOSFET is used to switch the oscillator current

The inductance is given by a coplanar waveguide (CPW) stub

ELECTRONICS

GROUP

2nd Generation Wavelet Generator

 $f_0 = 70 \text{ GHz}$

P_{out}=7 dBm

P_{dc}=29 mW

E_p=1.9 pJ/pulse

10-dBc bandwidth 20.5 GHz

PRF=15 Gpulses/s

 $t_p = 41 \text{ ps}$

Surfaces of InAs Nanowires

InAs/HfO2 nanowire capacitors

XPS on InAs nanowires

Nanowire capacitors behave like planar InAs capacitors
Temperature and frequency dependence
Holes may play a role due to narrow gap
Less effective oxide reduction

Nanowire Transistors

Transport in thin (15 nm) InAs NWs

Nanowire Inverters

f

1.5

1.0

0.5

0.0

-0.25

 V_{supply}

out

V_{ground}

2.0 $\frac{1}{100} V_{GS} = -0.5 \div 0.5 V$ $\frac{1}{100} V_{GS} = -0.5 \div 0.5 V$

l_{DS} (μΑ/μm)

-60

40

-20

0.50

0.25

V_{in}

500 nm

The Nanoelectronics Group

NANO ELECTRONICS GROUP

> Professors Lars-Erik Wernersson Erik Lind

Post. Docs Johannes Svensson Jiongjiong Mo Mikael Egard Mats Ärlelid

Ph.D.-students Karl-Magnus Persson Anil Dey Sofia Johansson Martin Berg Kristofer Jansson Lars Ohlsson Jun Wu Elvedin Memisevic Aein Shiribadi Cezar Zota

