EXILINXALL PROGRAMMABLE

Beating Moore's Law with the All Programmable SOC aka FPGA

Ivo Bolsens, Senior Vice President & CTO

ALL PROGRAMMABLE

Moore's Law

© Copyright 2013 Xilinx

Node Name, Chip Dimensions or Marketing?

© Copyright 2013 Xilinx

Scalable Architecture : FPGA

> 2001 : FPGA = Glue Logic

> 2013 : FPGA = UltraSCALE SOC

Moore's Law is About Logic, IO and Memory

Non-Uniform Block Scaling

Mix Has Also Changed, Putting More Pressure on Area

ALL PROGRAMMABLE

What is Driving the Bandwidth Increase?

© Copyright 2013 Xilinx

Cable Access Growth Exceeds Moore's Law (Nielsen's Law)

Fig. 1: Historical Evolution of Access Capacity. Source: Tucker (2010b)

© Copyright 2013 Xilinx

Similar Story in USB, WLAN and Wireless

Driven by Streaming Video

Data: Sandvine

ALL PROGRAMMABLE

What is impact on FPGA

© Copyright 2013 Xilinx

Maximum Density Of Xilinx FPGA By Node

Maximum Xilinx SerDes Rate (by Pin)

Aggregate Xilinx SerDes Bandwidth by Node

Aggregate Xilinx FPGA Memory BW by Node

EXILINXALL PROGRAMMABLEM

3-D Stacking, Providing More Silicon Area at Lower Cost and Lower Power

© Copyright 2013 Xilinx

Cost Comparison: Monolithic vs Multi-Die

Die Area

Why is First 3D Logic Product an FPGA?

- Natural partition using "long lines"
- > Very low "opportunity cost"
- > No 3rd party dependence
- Size matters" to customers
- Compelling value proposition "next generation density in this generation technology"

Virtex 2000T: Homogeneous Stacked Silicon Interconnect Technology (SSIT)

Elements of SSIT

© Copyright 2013 Xilinx

Interposer Optimizes Energy/Bit

Interconnects	Energy Efficiency (pJ/bit)
Inter-Die on Si Interposer 1	0.4
Intra-Package MCM ²	0.54
Inter Package (low loss cable) ³	2.6
Short-Reach SerDes on PCB ⁴	13.7

¹ Xilinx SSI technology
 ² 23.3, ISSCC 2013 (Poulton, Dally, *et. al.*)
 ³ 23.2 ISSCC 2013 ((Mansuri et al)
 ⁴ Pawlowski, Hot Chips 23

ISSCC 2014

© Copyright 2013 Xilinx

7V580T – Dual FPGA Slice with 8x28Gb/s SerDes Die

Takeaways

- > Xilinx LC counts have exceeded Moore's Law and are keeping up with Communications requirements
- > SerDes aggregate bandwidth is keeping up with Comms growth
- I/O (in particular DRAM) aggregate bandwidth is falling behind
 - Serial memory (HMC) is mitigating. Interposer based memory (HBM) will further mitigate.

ALL PROGRAMMABLE

Future Will be More Interesting

© Copyright 2013 Xilinx

Industry Debates on Transistor Cost

Design Cost

Estimated Chip Design Cost, by Process Node, Worldwide, 2011

Page 27

© Copyright 2013 Xilinx

Growing Challenge for ASIC & ASSP

>50% of Top 16 ASSP Vendors Losing Money

Communications	Operating Margin			
ASSP Vendors	2009	2010	2011	2012
А	21%	32%	26%	23%
В	16%	15%	5%	23%
С	12%	33%	31%	23%
D	19%	23%	26%	18%
E	2%	14%	13%	10%
F	-25%	-1%	8%	11%
G	15%	25%	18%	10%
н	12%	19%	10%	1%
I	-21%	6%	-1%	-23%
J	-21%	-2%	-11%	-33%
К	-5%	15%	-5%	-19%
L	-4%	2%	-6%	1%
М	-22%	-18%	-13%	-11%
N	-15%	-7%	-	-
0	-15%	1%	-18%	-24%
Р	-11%	-6%	-47%	-98%

Source – Public reports, Xilinx estimates

Eroding customer confidence in vendors

- High cost burden from over design for diverse needs
- No ability to differentiate or customize

Trend Wireless : Scalable Platforms

> Source ALU

Trend Wired : Software Defined

From "Virtualizing the Net" by Jon Turner

© Copyright 2013 Xilinx

Trend Services : Different Figures of Merit

Software Defined Networking gained massive industry mindshare

The best thing about OpenFlow or SDN, is that it's brought back a new hope to networking. Networking is cool again- Jayshree, CEO - Arista Networks

© Copyright 2013 Xilinx

Trend in Embedded : More Intelligence...Smart

SMART Data Center Revolution

New Opportunities to Control Costs and Increase Strategic Advantage...

Smart wireless networks to the rescue

Carriers are turning toward more intelligent network management...

Smart Factories

For factory management in the future, it will become essential to strive to implement smart capabilities...

The Next Big, Digital Economy; 'Smart Energy'

The energy market is undergoing a major transformation...

Trend Data Center : Scalability

Big Data

Increasing Volume, Velocity, and Variety

Low power

Reduce operation and cooling costs

Security

Both outside and inside

Impact of trends (1) Networking

New network fabrics

• Faster, Fatter, and Flatter

Software defined networking

- Software control plane
- Hardware data plane

Content-aware networking

- Deep packet inspection
- Enhanced security

Impact of trends (2) Compute

ARM-based microservers

• Improved performance per watt

Hybrid SoC

- CPU+accelerators+fabric
- Cost and power reduction

Larger memory

- Hybrid NVRAM and DRAM
- Latency reduction

Impact of trends (3) Storage

Specialized functions

• Compression, encryption, memcached

Custom SSD controllers

- Higher performance
- Reduced latency

Data-aware storage

- Integrated database support
- Offload from processor

Programmable & Smart Across All Markets

8 N / 11		-1
1	Ha	9
d	0	
	1	

Wireless Comms

Data Center

All Programmable	Smarter
 Multiple Spectrums Multiple Standards (LTE, 3G) Multiple Levels of QoS 	 Self Organizing Networks (SON) Cognitive Radio Smart Antenna
 Network Function Virtualization (NFV) Multiple Stds (400Gb etc.) Dynamic QoS Provisioning 	 Context Aware Network Services Self-Healing Networks Video Caching at the Edge
 Software Defined Networks (SDN) Multiple Stds (FCoE, iSCSI) Config Storage (SAN, NAS, SSD) 	 Data Pre-Processing & Analytics Virtualized Resource Optimization Intelligent Appliances
 Changing Resolutions (MPixel, Fps) Emerging Video Stds (UHD, 8K/4K) Evolving Video Processing Algorithms 	 Object Detection & Analytics Automotive Collision Avoidance Industrial Machine Vision

The All Programmable Platform

- Security : Bit level operations
- > Packet Processing : Wide Datapaths
- > DSP Processing : Pipelined Datapaths

C.Based Desig

- > Graphics Processing : Parallel Micro-Engines
- > System Management : Finite State machines

© Copyright 2013 Xilinx

Based

The Era of Heterogeneous Processing Unit

Programming the XSOC

X = Connected

- **X** = Scalable
- **X** = Parallel
- **X** = Heterogeneous
- **X** = Configurable
- **X** = Xilinx

Delivering All Programmable **X**SOC

Heterogeneous Multi-Processing

Programming Accelerators from C/C++

- Enables software programmers to target Xilinx FPGAs
 - Software-programmability
 - Portability: 7 series, Zynq
- Delivers productivity increase for RTL designers
 - C/C++ level verification and testbench reuse
 - Earlier area/latency reports
 - Software-driven design exploration

More Turns Per Day (Verification and Architecture Exploration)

FPGA:>38 times better performance than DSP video processorQOR:C2FPGA equal to or better than RTL synthesisEase-of-use:C2FPGA 2x fewer lines of C code than DSP processor

© Copyright 2013 Xilinx

HW/SW Design Flow

HW/SW Design Flow: SW Programmer View

Towards Heterogeneous Multi-core

Programmable Platform: CPU + FPGA Peer Processing

Capabilities

- > Coherent Caches for HW
- Coherent Caches for SW
- > Coherency Management

Coherency Benefits:

- Peer Processing: Direct Cache-2-Cache data movement
- Latency: Very low latency access to CPU (FPGA) data
- Usability: No SW cache flush needed

OpenCL Domain Specific Platforms

Conclusions

> More transistors, more performance, lower power

> Architecture Innovations to create Value

- Connectivity
- Granularity
- 3D Integration

> All Programmable Platforms : heterogeneous and scalable

- Programmable IO, Memory, Interconnect, DSP, Micro

New Programming Abstractions that support

- Parallelism
- Heterogeneity

© Copyright 2013 Xilinx

The Zynq Book Embedded Processing with the ARM Cortex-A9 on the Xilinx Zynq All Programmable SoC

> Hands-on introduction to Zynq for:

- Technical/non-technical managers
- Hardware/software engineers
- Academics and students

Book divided into three main sections

1) High level introduction to Zynq

- What is it?
- What can I do with it?
- How do I use it?

2) Technical overview

 Embedded system, Zynq, AXI, IP design, HLS, System Design (Vivado)

3) Operating systems for Zynq

Background, Linux overview, Linux on Zynq

Free PDF of The Zynq Book

From the book's website

- -www.zynqbook.com
- Same content as the hardcopy version of the book
- > Also download tutorials and source files from website
- Open source license for academia
 - Enables book contents to be re- used for non-commercial teaching and research

🐒 XII INX 🔈 ALL PROGRAMMABLE.