

Wideband and Energy Efficient Power Amplifiers for Wireless Communications

Mustafa Özen on behalf of Christian Fager {chrisitan.fager,mustafa.ozen}@chalmers.se

Microwave Electronics Laboratory | Chalmers University of Technology www.chalmers.se/ghz

Located by the west cost of Sweden ... Founded 1829 by William Chalmers ...11000 students (1150 doctoral students)

CHALMERS

UNIVERSITY OF TECHNOLOGY

Microwave Technologies at Chalmers

GaN HEMT technology

Robust transceivers, high RF power

GaN HEMT MMICs

Transmitters for telecom Power amplifiers High efficiency and linearization

THz devices & instrumentation Mixers: Schottky diode, varactors Hot-electron bolometer SIS Heterodyne receivers beyond 1 THz InP HEMT technology InP and InAs HEMT MMICs Cryogenic low-noise amplifiers

III-V MMIC design Multifunctional THz > 300 GHz Communication > 100 GHz GaN HEMT VCOs Mixed signal (>100 Gbps)

Emerging MW components Graphene HF electronics Ferroelectric tunable devices

Full Professors: Victor Belitsky, Spartak Gevorgian, Jan Grahn, Jan Stake, Herbert Zirath

Outline

Background

- Energy efficient wideband transmitter architectures
 - Varactor based dynamic load modulation
 - Doherty power amplifiers (PA)
 - Outphasing PAs
 - Mixed Doherty-outphasing techniques
- Summary

Transmitter Demands

 A radio transmitter generates high power information carrying electromagnetic signals.

- Most power hungry unit in a radio base station.
- Higher transmitter efficiency for
 - -Lower operational costs
 - -Smaller environmental footprint

Transmitter Demands

- Strong demand for higher data rates
- Wireless providers allocate more spectrum
 - 44 different bands are utilized in LTE-A

 $0.7 \; \text{GHz} \; 0.9 \; \text{GHz} \;\; 1.8 \; \text{GHz} \;\; 2.1 \; \text{GHz} \; 2.3 \; \text{GHz} \;\; 2.65 \; \text{GHz}$

• Wideband transmitters enable covering multiple bands with a single unit

Transmitter Demands

Carrier aggregation in LTE-A for higher data rates

 In summary: Energy efficient, large RF and signal bandwidth transmitters

Traditional linear PA operation

- The peak output power is determined by PA saturation
 - PA efficiency is maximum close to saturation
 - Operating it into compression results in severe distortion

- The total PA efficiency is weighted by the signal input power probability density function
 - For this case: Peak PAE = 55%, total average PAE = 22%

Efficiency enhancement via Supply modulation

- Provides large RF bandwidth ③
- Difficult to power scale at large instantaneous signal bandwidths ⁽²⁾
 - More suitable for handsets

Efficiency enhancement via load modulation

- High power realization at large signal bandwidths ⁽²⁾
- Challenging to achieve large
 RF bandwidth ⁽²⁾

Outline

Background

• Energy efficient wideband transmitter architectures

- Varactor based dynamic load modulation
- Doherty power amplifiers (PA)
- Outphasing PAs
- Mixed Doherty-outphasing techniques

• Summary

Varactor based DLM

Variation of output power by dynamically tuning the PA load network

- Varactors typically used as tuneable elements
 - Breakdown voltage > 100V
 - Low series resistance, large tuning range
- Simple and efficient control electronics
 - No need for high power dc converters etc.
 - Potentially wideband modulation

Varactor-based DLM

High power demonstrator

[C. M. Andersson, et. al, "A Packaged 86 W GaN Transmitter with SiC Varactor-based Dynamic Load Modulation", EuMC 2013]

Packaged (40x20mm) 100W GaN demo

Power scalable load network topology

Reactive Class J DLM

Results @ 2.14 GHz

- Peak power = 86W
- 6.7 dB PAPR WCDMA signal
 - ACLR < -46 dBc
 - 34% average efficiency
- Losses in load network limits efficiency enhancement

Dual-band Varactor-based DLM

- Dual band operation
 700 MHz & 1900 MHz
- Double stub tuner

Dual band DLM PA prototype

Optimal load trajectories

Dual band tunable load network Гι Z1,01 Z2.02 Lbw Cdc Z3,03 $\overline{\mathbf{m}}$ TL2 TL3 **TI 1** € 50 Ω TL5 TL4 Transistor Load Z5,θ5 drain Z4,θ4 HH^{μ} Vds

Vc1

Dual-band Varactor-based DLM

- Dual band operation
 700 MHz & 1900 MHz
- Double stub tuner

Dual band DLM PA prototype

Outline

- Background
- Energy efficient wideband transmitter architectures
 - Varactor based dynamic load modulation
 - Doherty power amplifiers (PA)
 - Outphasing PAs
 - Mixed Doherty-outphasing techniques

• Summary

Conventional Doherty PA Concept

Transistor voltages and currents

Conventional Doherty PA Concept

- Higher PAPR→Larger class-C
 - Lower gain and PAE 😕
 - Uneven power division 😕
- Increased manufacturing cost 8

Transistor voltages and currents

Hypothesis

• Large efficiency range (>6 dB) with identical devices?

- Devices should be fully utilized
 - Both devices are biased with nominal V_{DD}
 - Use all available current

Novel Symmetrical Doherty PA

 Calculate the combiner network parameters assuming identical devices

Boundary Conditions:

- Efficiency range (arbitrary)
- Class-B and class-C impedances at peak power & back-off

Novel Symmetrical Doherty PA 3.5 GHz Hardware Demonstrator

CHALMERS

TECHNOLOGY

- Combiner S-parameters:
 - S₁₁ = -0.81 + j0.24
 - $-S_{21} = -0.022 j0.38$

$$-S_{22} = -0.27 + j0.24$$

Novel Symmetrical Doherty PA Experimental verification

 A 3.5 GHz 30 watt GaN HEMT symmetrical Doherty PA prototype

- A record high PAE of 55% at 8 dB back-off
 - Symmetrical devices & novel load-pull based combiner design approach

Novel Symmetrical Doherty PA Experimental verification

• Tested with carrier aggregated 100 MHz (5x20) OFDM signals

- -50 dBc ACLR with 100 MHz signals.
 - 5 dB margin to spectral mask.
 - High efficiency with excellent linearity

A Novel Wideband Doherty

[D. Gustafsson et al., "A Modified Doherty Power Amplifier With Extended Bandwidth and Reconfigurable Efficiency," IEEE T-MTT, Jan. 2013]

A Novel Wideband Doherty

[D. Gustafsson et al., "A Modified Doherty Power Amplifier With Extended Bandwidth and Reconfigurable Efficiency," IEEE T-MTT, Jan. 2013]

Doherty PA topology

- Doherty PA
 - Backoff efficiency bandwidth limited by $\lambda/4$ impedance inverter
 - $-Z_T \neq R_L$
- Proposed PA

$$-Z_T \equiv R_L$$

New drive scheme and biasing

Parameter	Value
V_{ds2}	V_{ds2}
V_{ds1}	$\xi_b V_{ds2}$
Z_T	$2V_{ds2}/I_{max1}$
Z_L	$2V_{ds2}/I_{max1}$
I_1	$\xi I_{max1}/2$
I_2	$ \left\{ \begin{array}{ll} 0, & 0 \leq \xi \leq \xi_b \\ \frac{k \cdot I_{max1}}{2} e^{-j\theta}, & \xi_b \leq \xi \leq 1 \end{array} \right. $
θ	$\operatorname{arcsin}\left(\frac{k\cos\left(\pi\bar{f}/2\right)}{2\xi}\right) + \frac{\pi}{2}, \xi_b \le \xi \le 1$
k	$\sqrt{\xi^{2} + \xi_{b}^{2} - \sqrt{\left(\xi^{2} + \xi_{b}^{2}\right)^{2} - \left(\frac{\xi^{2} - \xi_{b}^{2}}{\sin\left(\pi\bar{f}/2\right)}\right)^{2}}$
\bar{f}	f/f_0

CHALMERS UNIVERSITY OF TECHNOLOGY

A Novel Wideband Doherty Bandwidth performance

- Frequency independent backoff efficiency
- Extended average efficiency bandwidth

A Novel Wideband Doherty

GaN MMIC Demonstrator

- TriQuint 0.25µm GaN process
- 5.7-8.8 GHz (42% bandwidth)
- PAE: 30-39% @ 9 dB BO
- Reconfigurable PAE shape by V_{dd}/V_{gg} adjustments only

Outline

- Background
- Energy efficient wideband transmitter architectures
 - Varactor based dynamic load modulation
 - Doherty power amplifiers (PA)
 - Outphasing PAs
 - Mixed Doherty-outphasing techniques

• Summary

Outphasing Transmitter Architecture

- Two constant envelope signals are summed to achieve amplitude modulation
- Possibility for high efficiency switch mode operation

Combiner determines the interaction between the PAs

Chireix Outphasing Combiner

 Chireix outphasing combiner enables proper load modulation and thus high efficiency.

Combiner is inherently narrowband (~5% efficiency bandwidth).
 Mainly due to quarter wave transformers.

Novel Outphasing Combiner Design Approach

- Combiner network parameters are derived from the boundary conditions
 - The transistors experience optimal class-E impedances at peak and <u>average power</u> levels

Wideband Outphasing Transmitter Realization

- A 25 W 750-1050 MHz CMOS-GaN HEMT transmitter prototype
 - Combiner S-parameter continuum is mapped to the frequency response of practical network

Wideband Outphasing Transmitter Experimental Results

- Efficiency improvement is 20 to 40 percentage units
 - Efficiency enhancement, large RF bandwidth (33%) and possibility for high level of integration

Outline

Background

Summary

- Energy efficient wideband transmitter architectures
 - Varactor based dynamic load modulation
 - Doherty power amplifiers (PA)
 - Outphasing PAs
 - Mixed Doherty-outphasing techniques

MC-2 Microtechnology and Nanoscience

Outphasing/Doherty continuum

[C. Andersson et al., "A 1–3-GHz Digitally Controlled Dual-RF Input Power-Amplifier Design Based on a Doherty-Outphasing Continuum Analysis," IEEE T-MTT, 2013]

General dual-input PA

Outphasing/Doherty continuum

[C. Andersson et al., "A 1–3-GHz Digitally Controlled Dual-RF Input Power-Amplifier Design Based on a Doherty-Outphasing Continuum Analysis," IEEE T-MTT, 2013]

- Continuum between Doherty and outphasing operation
- Potential for >octave bandwidth and efficient operation
 - Class B (short circuited harmonics) assumed

Outphasing/Doherty continuum

Demonstrator results

ADS simulations

Measurements

CHALMERS UNIVERSITY OF TECHNOLOGY

Outphasing/Doherty continuum

Excellent 1-3 GHz performance

CW measurements P_{max} = 44 ± 0.9 dBm >45 % PAE at 6 dB OPBO from 1.0 - 3.0 GHz

- DPD linearized measurements
 - 5 MHz WCDMA
 - ACPR < -57 dBc
 PAE > 40/50%

Summary

- Dynamic load modulation architectures
 - Varactor-based dynamic load modulation
 - Doherty PA
 - Outphasing PA
 - Mixed Doherty and outphasing techniques
- New circuits and design techniques
 - Enabling large RF bandwidhts (1-3 GHz)
 - Excellent linearity with 100 MHz carrier agg. OFDM signals
 - Reduced cost solutions (Symmetrical Doherty)

Acknowledgments

...past and present power amplifier research collaborators

T. Eriksson (Prof.)

C. Fager (Assoc. Prof.)

Adj. Prof. R. Jos (NXP)

Dr. P. Landin (post-doc)

Dr. M. Özen (post-doc)

Dr. C. Sanchez K. Hausmair (post-doc) (PhD stud)

(PhD stud)

D. Gustafsson (PhD stud)

W. Hallberg (PhD stud)

S. Gustafsson Dr. U. Gustavsson (PhD stud) (Ericsson)

Dr. A. Soltani (Qamcom) & Dr. H. Cao (Ericsson)

Dr. P. Saad (Ericsson)

Dr. H. Nemati (Ericsson)

Dr. C. Andersson (Ericsson) (Mitsubishi)

X. Bland

(SATIMO)

F. Johansson (MSc stud)

Companies and research funding agencies

Vetenskapsrådet

