

2014 SoS Workshop Mixed-Signal IC Design

Presented by Pietro Andreani

Department for Electrical and Information Technology Lund University

Work performed in 2013-2014

- Filtering CT $\Delta\Sigma$ ACSs for LTE
 - Mattias Andersson
- An ultra-low-power CT $\Delta\Sigma$ ADC with SAR quantizer
 - Dejan Radjen (simulations)
- CT $\Delta\Sigma$ ADC for LTE
 - Xiaodong Liu (not shown)
- A digital PLL
 - Ping Lu (simulations)
- Two class-D VCOs
 - Luca Fanori
- A reconfigurable wideband VCO
 - Ahmed Mahmoud (not shown)

Merging LPF and ADC

Channel-Select Filter + CT $\Delta \Sigma$ **ADC**

Noise from DSM is 2nd-order shaped by global feedback

Improved Version: Filtering CT ΔΣ ADC Supporting LTE 2x20MHz

3rd-order CSF

2nd-order DSM

Noise from DSM shaped by three zeroes in CSF

Simulation with white noise at DSM input

Lund University - Department for Electrical and Information Technology

Filtering ADC

- 3rd-order Chebychev CSF, 9.0/18.5 MHz BW
- 2nd-order DSM, 3-bit DACs, f_s=288/576 MHz

Filtering ADC vs plain ΔΣ ADC

Topologically identical! – However:

- 5th-order DSM
 - 5 poles at high frequencies to maximize SQNR
- Filtering ADC:
 - 2 poles at low frequencies for filtering
 - 3 poles at high frequencies for SQNR

Chip photograph

- ST 65nm CMOS
- V_{dd}=1.2V, I_{dd}= 9.4mA (11.3mW)
- f_s=288MHz, BW=9MHz
- Core area 0.5x0.22mm²

Lund University - Department for Electrical and Information Technology

Signal Transfer Function in 2xLTE20

Lund University - Department for Electrical and Information Technology

SNR and SNDR in 2xLTE20

Tolerance to blockers, 2xLTE20

- P_{1dB} vs. blockers (P_{1dB} = blocker power for which in-band noise increases by 1dB)
- Assuming 10mS front-end and -54dB TX-to-RX in duplexer

Tolerance to blockers, LTE20

- P_{1dB} vs. blockers
- Assuming 10mS front-end and -54dB TX-to-RX in duplexer

State-of-the-art in filtering ADCs

Parameter	Paper V	Paper IV	Philips	Sosio	Rajan	
			ISSCC'04	ESSCIRC'11	ISSCC'14	
fs (MHz)	576	288	64	405	256	
BW (MHz)	18.5	9	1	6	2	
SNDR (dB)	56.4	68.4	59	74.6	74.4	
Filter order	3	2	1	2	2	
Avg. IRN in BW (nV/\sqrt{Hz})	5.1	8.1	280	—	40	
Gain setting (dB)	26	12	0	—	0	
In-band IIP3 (dBV_{rms})	-8.5	11.5	19	—	24	
Out-of-band IIP3 (dBV_{rms})	20	27	_	—	34	
f_{-3dB} (MHz)	25.0	16.9	3	—	4	
Power (mW)	7.9	11.3	2	54	5	
Tech. (nm)	65	65	180	90	130	
Vdd (V)	1.2	1.2	1.8	1.2-1.8	1.4	
DR at BW \times 4(dB)	82	80	65	90	90.5	
FOM1 at BW \times 4 (fJ/c.)	21	77	700	180	45	
FOM2, OOB IIP3 (aJ)	4	7	_	_	15	

A 2nd-order CT ΔΣ modulator with an SAR quantizer

Part of a large SSF project, "Wireless Communication for Ultra Portable Devices (UPD)", lead by Prof. Henrik Sjöland

Architecture of ΔΣ modulator

- ΔΣ modulator with a 4-bit SAR quantizer
- SAR more power efficient than standard flash quantizers
- Generation of clock at 5*f_s* avoided with asynchronous control

Details of ΔΣ modulator

- 2nd-order loop filter with single opamp to save power
- Resistive feedback DACs with NRZ pulses

Simulation results

Performance summary				
Parameter	Simulated performance			
Technology	65 nm CMOS			
Supply voltage	800 mV			
Signal bandwidth	500 kHz			
Maximum input amplitude	200 mV differential			
Clock frequency	16 MHz			
SNDR	65 dB			
Power consumption	69 µW			
Figure of merit	47 fJ/conv			

- Unfortunately, unstable in real life due to impact of layout parasitics
- Redesign ongoing

Digital PLL

Time-to-digital converter (TDC)

RFIC 2013

Lund University - Department for Electrical and Information Technology

Class-D DCO

Noise cancellation

Phase noise simulations

- BW=1.1MHz
- Noise cancellation strongly reduces quantization noise
- Waiting for IC to return from fab

Lund University - Department for Electrical and Information Technology

Luca Fanori & Thomas Mattsson (Ericsson)

Prior art: class-D oscillator

ISSCC 2013, JSSC Dec. 2013

- Amplitude A ≈ 3V_{dd}, efficiency > 90%
- Excellent switches available in nm CMOS
- Suitable for very low V_{dd}

1st VCO: dual-core VCO with TR > 1 octave

ISSCC 2014

- Orthogonal 8-shaped inductor → no magnetic field between coils
- Very wide tuning range with small inductor area
- Class-D →
 low voltage supply,
 high performance

Chip photograph

- 65nm CMOS process without thick metal
- Inductors: 1nH and 0.6nH
- Overall tuning range: 2.45.3GHz (75%)
- 0.33mm² active area
- Voltage supply: 0.4-0.5V

Tuning range

Q vs. frequency

(1) Actual design
(2) Other inductor removed (difference < 10%)
(3) Inductor optimized for standalone VCO

Phase noise at V_{dd} =0.5V

- FoM ≈ 188/189dBc/Hz across the tuning range
- 1/f³ noise corner frequency between 0.7MHz and 1.5MHz

2nd VCO: class-D VCO with on-chip LDO

ESSCIRC 2014

- P_{top} gate follows P_{top} source above *f_{LP}* → spurs and noise from V_{dd,ext} are rejected
- Narrow-band op-amp → negligible op-amp impact on phase noise

Chip photograph

- 65nm CMOS with thick top metal
- 0.9nH inductor
- $Q_{ind} = 14$, $Q_{tank} = 11$ @ 4GHz
- Tuning range: 3.0 4.3GHz
- Area: 850μm × 410μm
- V_{dd} = 0.4-0.5V
- $V_{dd,ext} = V_{dd} + 200 mV$

Phase noise at V_{dd} = 0.5V

SCANDINAVIAN EXCELLENCE DEFINED IN LUND

Lund University - Department for Electrical and Information Technology

