A 0.6–3.0 GHz 65 nm CMOS Radio Receiver with ΔΣ-based A/D-Converting Channel-Select Filters

<u>Xiaodong Liu¹</u>, Anders Nejdel¹, Mattias Palm², Lars Sundström², Markus Törmänen¹, Henrik Sjöland^{1,2}, Pietro Andreani¹

¹Lund University, Lund, Sweden

²Ericsson AB, Lund, Sweden

Outline

- Motivation
- System Design
- Circuit Implementation
- Measurement Results
- Conclusion

Traditional RF Receiver

- Direct-conversion receiver
- CSF used to relax DR of ADC

Traditional RF Receiver

• CSF used to relax DR of ADC

:kA: 리피미 (#

Proposed Receiver

- Reduced power by reduced ADC requirements
- 1^{st} order $\Delta\Sigma M$

• Duplexer band 20: TDK B8633

• Adjacent Channel and TX

Why using an ADC-CSF?

- BW: 2xLTE20
- 4th Order CSF
- 1^{st} Order $\Delta\Sigma M$

Why using an ADC-CSF?

- BW: 2xLTE20
- 4th Order CSF
- 1^{st} Order $\Delta\Sigma M$
- Assume $STF_{\Delta\Sigma M}=1$

Noise Suppression vs. Selectivity

Noise Suppression vs. Selectivity 35 Noise Suppression [dB] 30 Filter in this work 25 20 15¹ 1.2 1.4 1.6 1.8 2 Filter BW / Signal BW • 4th Order CSF \rightarrow 73 dB SQNR

– 50 dB for 1^{st} Order $\Delta\Sigma M$ and 23 dB suppression

LNTA

- Single-ended input
- Wideband input match

LNTA

- Single-ended input
- Noise-cancelling, NF < 1.6 dB

소유 리피키 �

ADC-CSF

- Bandwidth for LTE10, LTE20 and 2xLTE20
- Max SNDR for stand-alone ADC = 60 dB
- OSR = 16 for all BWs

Chip Micrograph

- ST 65 nm CMOS
- Core area: 0.7 mm² (excl. LVDS drivers)

Chip Micrograph

Chip Micrograph

• 36 mW (LTE10 0.6 GHz) – 53 mW (2xLTE20 3 GHz)

> || 티티크 않았

Measurement Setup

Noise Figure, 3 Samples, LTE10

Lund Circuit Design Workshop 2015

Noise Figure

• Frequency steps of 148 MHz

Noise Figure

- Frequency steps of 148 MHz
- NF for LTE20 peaks, but NF for LTE10 is flat

- Noise figure depends on f_{LO}/f_s ratio
- ADC Noise is shaped, peaks at 0.5 f_s

- Assume shaped noise at mixer input
- Low noise down-converted

- Assume shaped noise at mixer input
- Noise peaks down-converted if f_{LO}/f_s = M.5

P_{1dB},IIP2, IIP3 vs. RF, LTE10

Gain, IIP3, P_{1dB} at Baseband, LTE20

Image Rejection

SNDR vs. Power

Lund Circuit Design Workshop 2015

Comparison with $\Delta\Sigma M$ -based RX

	This Work	JSSC 15	JSSC 14	JSSC 13
Туре	RX with ADC-CSF	Direct $\Delta\Sigma RX$	Direct $\Delta\Sigma RX$	RX with ADC-CSF
RF Freq. [GHz]	0.6-3	0.7-2.7	0.4-4	0.04-1
NF [dB]	2.4-3.5	5.9-8.8	16	2.7-3.5*
Power [mW]	35.5-53.0	90	17-70.5	221.4
Supply [V]	1.2	1.1	1.5/1.2	1.8/1
IIP3 [dBm]	-6-0	-2	+13.5	-13
SNDR [dB]	48-55	40-43	52-68	-
RF Carrier BW [MHz]	10, 20, 40	1.5, 15	4, 10	5, 6, 7, 8
Area [mm ²]	0.7	1	0.56	5.6**
Process [nm]	65	40	65	80

*Estimated **Incl. PLL and DSP

Conclusion & Summary

- Wideband Receiver, Digital Output
- Power efficient RX with low NF
- ADC-CSF with aggressive filtering
- 4^{th} order Butterworth + 1^{st} order $\Delta\Sigma M$
- High SNDR for 1^{st} order $\Delta\Sigma M$

Acknowledgement

Thanks to the Swedish Foundation for Strategic Research (SSF) for funding

Chip fabrication was supported by STMicroelectronics