Energy Efficient Computing in Nanoscale CMOS

Vivek De Intel Fellow Director of Circuit Technology Research Intel Labs

Internet of Everything (IoE)

Need end-to-end energy efficiency

Moore's Law scaling

Dynamic platform control

Near Threshold Voltage (NTV) computing

NTV IA processor

NTV design techniques

Narrow muxes No stack height > 2

NTV IA – powered by solar cell!

Power performance measurements

Power components

Vcc-max (Super-Threshold) Vcc-opt (Near-Threshold) Vcc-min (Sub-Threshold)

Logic Vcc: 1.2V Memory Vcc: 1.2V Logic Vcc: 0.45V Memory Vcc: 0.55V

Logic Vcc: 0.28V Memory Vcc: 0.55V

Minimum energy operation

NTV and variability

Voltage-frequency margins

Dynamic adaptation & reconfiguration

Adapt & reconfigure for <u>best</u> power-performance

Dynamic V & F adaptation

Environment-aware • Adapt F/V to V/T change → reduce V/T margin
dynamic adaptation • Adapt F/V to aging → reduce aging margin

Resilient platforms

<u>Resiliency</u> for performance, efficiency & reliability

Resilient & adaptive core

Technology	45nm CMOS
Die Area	13.64 mm ²
Core Area	0.39 mm ²
Core F _{MAX}	1.45GHz at 1.0V
Core Power	135mW at 1.0V

Performance & efficiency gains

Integrated voltage regulators

Fully integrated VR

Energy efficient interconnects

Memory capacity & bandwidth

3D Integration: SRAM

3D Integration: DRAM

Neuromorphic computing

End-to-end efficiency for IoE

System-Wide Breakthroughs Needed Across the Board