

A Cellular Receiver Front-End with Spectrum Sensing

MOHAMMED ABDULAZIZ

Outline

- LTE-A scenarios
- Motivation
- System architecture
 - NC-LNTA
 - OTA
 - Spectrum sensor architecture
- Measurements
- Conclusions

LTE CA scenarios

University

LTE blocking-1

• Single carrier or contiguous CA scenarios

Contiguous CA or single carrier blocking scenarios

Reference sensitivity
ACS or IBB

OBB (TX leakage)

LTE blocking-2

- Non-contiguous CA
- In-gap interference also exists.

Non-Contiguous CA

- Carrier 2
- 🛄 Adjacent channel image
- In-gap interference

Requirements

- In-band, band-edge and out-of-band linearity are equally important
- Narrow band blocking \rightarrow high IRR
- Low power consumption
- Need to tune the RX-FE based on the working scenario (gain, mixer capacitor, noise cancellation etc.).

System architecture

- NC-LNTA
- Linearized OTA
- Integrated spectrum sensor
- Tunable gain, mixer capacitors, IQ mismatch etc..

Channel select filter

- TIA is incorporated.
- Tunable gain at the TIA
- High sheet resistance poly resistors
- It can be shown that:
 - R₁ for fine amp. tuning
 - R₂ for fine phase tuning

Two stage OTA

• Push-pull stages \rightarrow improved linearity

Common mode latch up

- LO CM signals are fed through directly to TIA output.
- The OTA saturates to VDD or GND at startup.
- Need large mixer capacitor.
- Large capacitor → in-band linearity is heavily degraded.

Two stage OTA

• Bias in weak inversion (around ±200mV+Vcm) to prevent latch up.

Two stage OTA

• DS to further linearize the OTA, feedback \rightarrow small devices

- Input switches for negative/positive frequency sweeps and to enable calibration
- DC output → easy to digitize
- Input switches are open for calibration
- Filter output for one time characterization

Measurements

- ST-65nm CMOS process
- NC off reduces LNTA current to 5.6mA
- LO reduces to 7.6mA at 750MHz

Measurement Setup

NF, gain, and S₁₁

NF, gain, and S₁₁

OTA linearization

• Linearity in-band and at band-edge is limited by the BB.

OTA linearization

• Improvement in in-band and band-edge

NC-LNTA

• Low power consumption \rightarrow moderate NF

NC-LNTA

• Low NF \rightarrow current is more than double

I Q mismatch

- Four port VNA (ZVA-67) was used
- Fine tuning at band-edge:
 - Less than 0.017dB amplitude and 0.15° phase resolution
 - IRR → better than 55dB

- Normalized frequency response
- Scans up to ±100MHz offset!

•

- Can detect in-band signals up to -25dBm.
- Out-of-band (BB BW is 25MHz) can detect up to -22dBm

 \mathbf{b}

LTE signals- out-of-band blocker

 -24dBm blocker at 100MHz and -60dBm 64-QAM at 40MHz (band-edge)

♪ MS2830A 3GLT	E Downlink			_10	▲ MS2830A 3GLTE Downlink						
Carrier Freq.	2 040 000 000 Hz	Input Level	-10.00 dBm			Carrier Freq.	2 040 000 000 Hz	Input Level	-10.00 dBm		
Modulation	AUTO	ATT	30 dB			Modulation	AUTO	ATT	30 dB		
Channel Bandwidt	h 10MHz			Reference Signal	Auto	Channel Bandwidt	h 10MHz			Reference Signal	Auto
Result	Mea				Result Measuring						
MKR Subcarrier 12 Symbol 1 Physical Channel PDSCH I -0.83641 Q 1.07443			Frequency Error Output Power Mean Power Total EVM (rms) Total EVM (peak) Symbol Number Subcarrier Num Origin Offset	0.28 Hz 0.000 ppm -15.26 dBm -15.30 dBm 18.20 % 85.74 % 3 ber 255 -74.65 dB		MKR Subcarrier 12 Symbol 1 Physical Channel PDSCH I -0.74271 Q 1.07959	Q		Frequency Error Output Power Mean Power Total EVM (rms) Total EVM (peak) Symbol Numbel Subcarrier Num Origin Offset	1.25 Hz 0.001 pp -13.12 dE -13.16 dE 4.25 % 13.70 % r 8 ber 590 -61.88 dE	: m Im Im

Mixer capacitor=4pF

EVM=18.2%

Mixer capacitor=24pF

EVM=4.2%

LTE signals- out-of-band blocker

Blocker moved to 80MHz

LTE signals- in-gap blocker

- So far large mixer capacitor always helps
- IMD limited performance
- Strong in-gap \rightarrow -24dBm, and carrier at -54dBm
- RF+BB gains reduced

Mixer capacitor=4pF

→EVM=3.8%

▲ MS2830A 3GLTE	Downlink				_10
Carrier Freq.	2 040 000 000 Hz	Input Level	-66.00 dBm		
Modulation	AUTO	ATT	10 dB		
Channel Bandwidth	10MHz			Reference Signal	Auto
Result	Mea	suring			
MKR Subcarrier 12 Symbol 1 Physical Channel PDSCH I -0.75039 Q 1.08467			Frequency Error Output Power Mean Power Total EVM (rms) Total EVM (peak) Symbol Number Subcarrier Numbo Origin Offset	1.97 Hz 0.001 ppm -30.90 dBm -31.26 dBm 27.09 % 89.82 % 12 er 337 -55.54 dB	

Mixer capacitor=24pF

→EVM=27.0%

Conclusion

- A wide-band RX-FE supporting LTE CA scenarios is presented.
- Low NF thanks to noise canceling-LNTA, and improved linearity thanks to linearized OTA.
- Fully integrated spectrum sensor
- LTE signals used to show the usefulness of spectrum sensing in tuning RX-FE.

Acknowledgment

Swedish Foundation for Strategic Research

<u>/inritsu</u>

