### Lund Circuit Design Workshop

### Status and Future Plans for the MAX IV Light Sources

Pedro F. Tavares

MAX IV Laboratory



### **Summary**

- What is Synchrotron Radiation ?
- Why Synchrotron Radiation ?
- •The MAX IV Light Sources: Status and Commissioning Highlights
- Future Perspectives



# What is Synchrotron Light ?

Ring (528 m circumf)

**Experimental stations** 

-

Ring (96 m circumf)

Linear accelerator (ca 250 m)

**Electron source** 

Properties: Wide band High intensity/Brilliance Polarization Time structure

Pictures and animation by S.Werin

### **Insertion Devices**

#### Undulator

# Periodic arrays of magnets cause the beam to "undulate"





Photo E.Wallen



*www.lightsources.org* Lund, August 2016

MAX IV – Status and Future Developmen

# **Using Light To Understand the World**

Anton van Leeuwenhoek

1632-1723







he telescope is presented to the Doge of Venice

Lund, August 2016

MAX IV – Status and Future Developments Plans



# Why Synchrotron Light ?



Image: Lawrence Berkely Lab

Lund, August 2016

MAX IV – Status and Future Developments Plans



### Why Synchrotron Light?



OLIVEIRA, M. A. et al. Crystallization and preliminary X-ray diffraction analysis of an oxidized state of Ohr from Xylella fastidiosa. Acta Crystallographica. Section D, Biological Crystallography, v. D60, p. 337-339, 2004





A.Malachias et ak, 3D Composition of Epitaxial Nanocrystals by Anomalous X-Ray Diffraction, PRL 99, 17 (2003)



J.Lindgren et al, Molecular preservation of the pigment melanin in fossil melanosomes, Nature Communications DOI: 10.1038/ncomms1819 (2012)

Sandstrom, M. et al. Deterioration of the seventeenth-century warship vasa by internal formation of sulphuric acid. Nature 415, 893 - 897 (2002)

d Fu

b

Absorbance (arbitrary units)

1.5

0.5

0.0

### SR Light Sources WorldWide





### **Conceptual Basis of the MAX IV Design**

- Scientific Case calls for high brightness radiation over a wide spectral and time range: IR to Hard Rrays, Short X-Ray Pulses.
- Need for high brightness: low emittance and optimized insertion devices.
- This is hard to achieve in a single machine:
- higher electron beam energy  $\rightarrow$  harder photons
- lower electron beam energy  $\rightarrow$  softer photons





# The MAX IV Approach

# • Different machines for different uses:

- A high energy ring with ultra-low emittance for hard X-ray users.
- A low emittance low energy ring for soft radiation users
- A LINAC based source for generating short pulses and allowing for future development of an FEL source.







# **MAX IV Project Timeline**

- 2002 First technical design note
- 2005 Scientific Case/Conceptual Design Report
- 2009 Funding secured
- 2010 Detailed Design Report Funding released
- Spring 2015 Linear accelerator commissioned
- Autumn 2015 3 GeV ring commissioning
- June 2016 Inauguration
- Autumn 2016 1.5 GeV ring commissioning



# **3 GeV Ring Commissioning Timeline**





### Future Perspectives Higher Brightness and Coherence

### Full Delivery of the DDR Parameters – User operations

#### LINAC

- Soft X Ray FEL (proposal User Community)
- Hard X Ray FEL

#### 3 GeV Ring

- Brightness Improvements: current lattice and Ids (150 pm rad)
- Brightness Improvements: additional focussing (100 pm rad)
- Completely new lattice (diffraction limit at 10 keV)

#### 1.5 GeV Ring

 Timing modes (requested by User Community)



# **Light Source Figures of Merit**



Stability

How do photon beam performance goals translate into electron beam performance requirements ?



### **Spectral Brightness**



#### **Photon Phase Space**

 $B(E,\phi,\theta,x,y) = \frac{dN}{dtd\,\delta d\,\theta d\,\phi dxdy}$ 

Density in photon phase space

In an ideal optical transport system, brightness is conserved – a property of the source. Several derived quantities are often used

**Central Brightness** 

$$B_0 = \frac{dN}{dt d\delta d\theta d\phi dx dy} \Big|_{x=y=\theta=\alpha=0}$$

Angular density of flux

$$F_0 = \int B d\phi dx dy$$

H.Wiedemann, Part.Acc.Phys, Vol II Lund, August 2016 MAX IV – Status and Future Developments Plans



# **Brightness from a real beam**

Convolute the angular distribution of radiation from a single electron with the electron beam transverse spatial and angular distributions

For the nth harmonic of an undulator of length L



### **Emittance Evolution over 40 years**





### MAX IV: Forerunner of a new breed of accelerators



### How did we go from third to fourth generation ?





### **MAX IV - An integrated Solution**



### **Compactedness is the key!**



Lund, August 2016 MAX IV – Status and Future Developments Plans

MAXIV

### How can we go even further ?





# Diffraction Limited @ 10 keV within ~ 500 m Compact Design – Small Aperture





### **Beyond MAX IV – an exercise**





### **Beyond MAX IV – an exercise**

Lattice design: OPA (A.Streun) Elegant (M.Borland)

### 19-BA lattice in the MAX IV 3 GeV ring tunnel



# **Conclusions**

- A new generation of storage-ring based light sources has just come into operation opening a wide range of research opportunities.
- Many labs around the world are now following that trend.
- Future order-of-magnitude improvements in performance seem within reach if we just dare to go even further along the compactedness route.

