

Cellular IoT Devices

Nafiseh Mazloum, Research and Standardization

REQUIREMENTS ON CELLULAR CONNECTIVITY FOR IOT

Low complexity low cost device

Sensors, actuators, and similar devices, Usually do not require the wideband operation of LTE.

Long (10+ years) battery life

Devices are often batterypowered and battery life needs to last at least the device life-time.

Extended (+20dB) coverage

For devices located in rural area, deserted area, or basement of a building.

Massive number of devices

Covering all types of communication between machines.

SONY

EVOLUTION OF CELLULAR CONNECTIVITY FOR IOT

We are here

First eMTC/NB-IoT 2015 2016

2017

2019

2025

Rel-13

Key features: low complexity UE (Cat-M1/NB1):

- Reduced bandwidth
- New UE power class

Extended discontinuous reception (eDRX)

Rel-14

Key features: New category UE (Cat-M2/NB2) Improved signalling

Rel-15

Key features: Energy efficient signalling

- New synch signal
- Wake-up signal

Rel-16

Key features: Improve signalling

- Group wakeup signal
- Enahanced early data transmission

Gen.2 (Rel. 13)

LOGISTIC and TRANSPORTATION - MOBIAM

Improved efficiency in transportation and tracking solutions

HEALTH and WELLNESS - CARRON

A platform for M-health

CELLULAR IOT USE CASES - EXAMPLES

POWER CONSUMPTION CHARACTERISTICS

POWER CONSUMPTION CHARACTERISTICS

EXISTING POWER SAVING FEATURES (Cont.)

POWER CONSUMPTION OF EXISTING SCHEMES

Ponna R. and Ray D., "Saving Energy in Cellular IoT using Low-Power Wake-up Radios", Master's Thesis, Department of Electrical and Information Technology, LTH, Lund University

SONY

HOW MUCH AND WHEN/IF WAKE-UP RECEIVER SAVES?

Ponna R. and Ray D., "Saving Energy in Cellular IoT using Low-Power Wake-up Radios", Master's Thesis, Department of Electrical and Information Technology, LTH, Lund University

SUMMARY

■ Existing feature(s): Power saving features such as power saving mode (PSM), extended discontinuous reception (eDRX), and wake-up signalling enable connectivity and long battery life for mobile originated applications and/or delay-intolerant device-terminated applications.

☐ Future feature: A use of an extra low-power wake-up receiver as an assistance to the main receiver can enable connectivity and long battery life time for use-cases with tight requitement on device reachability.

