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Rebooting Computing...

The nature of computing is changing
— Programming driven by data and learning, not algorithms
— Truly ubiquitous (smart world, smart humans, ...)

While the technologies of old are plateauing

— Traditional computer architecture limited by interconnect
— Variability and leakage constraints limit energy scaling




The Neuroscience Promise

An Amazing 2-3 orders more efficient than

Com putational Engine today’s silicon equivalent (>10'6 FLOPS with
~20 W)
Robustness in presence of component failure
and variations
» Neural response is highly variable (o/u=1) [Faisal]

Amazing performance with mediocre
components

» E£.g. sensory pathways— auditory,
olfactory, vision, ...

See:

“The return on neuro-inspired computing -
Why now?”

Lund SoS workshop, Sept 2014

Still marginally understood, let alone “cloned”




Distinguishing Properties

Learning-based programming paradigm

Approximate (statistical) & mostly analog

Overcomplete and redundant
Data represented in many ways

= Patterns, phase relations, distributions

Randomness as a feature

Cerebrum

Parietal lobe

Frontal : Qccipital
. lobe

Pons

Brain stem

Function mapped to space

" no time multiplexing
Intertwined memory and logic
Embarrassingly parallel
Sparse




Learning-Based Computational Models

da(z,y) Op(z,y,2) Oy, 2) bq(z)

Bayesian Machine learning
(Believe propagation, reinforcement learning,
graphical models, support-vector machines)

Model building non-trivial
Executed on standard processors (graph analytics)

High-dimensional computing (SDM, holographic)
Computing with patterns, one-shot learning

Deep Neural Nets

Learning compute and data hungry
Separate from execution

Complex




High-Dimensional Computing™
as another approach

Cognitive processing that

provides simple and efficient on-line (one-shot)
learning

supports reasoning

is embarrassingly parallel and memory-centric

is extremely robust against most failure mechanisms
offers ultra-low energy potential

amenable to nanoscale 3D technologies

*: This is just one of many options being explored today




Hyperdimensional Vectors — the Concept

Probability that two N bit vectors, randomly chosen, are different by
at least N/2 bits (or normalized Hamming Distance >= 0.5)

N=10000
N=1000
n Norm. Hamming Distance
10 >=0.400 for 82.8125%
100 >=0.450 for 86.4373%
1000 >=0.453 for 99.8671%
10000 >=0.485 for 99.8694%

Distance histogram of vectors in N-dimensional space

99.9% probability that normalized Hamming distance between two
randomly chosen vectors of length of 10k bits (0’s and 1’s) > 0.485!




Hyper-Dimensional Computing (HDC)

= Hyperdimensional vectors (N > 10000) as basic computational

symbols
— represent patterns rather then numbers
— Can be approximate — that is, can be compared for similarity

= Mathematical properties of
high-dimensional spaces in
remarkable agreement with
behaviors observed in brain

[Ref: P. Kanerva, An Introduction to Computing in Distributed Representation with High-Dimensional Random Vectors, 2009]




Example: Text Processing

(language recognition, text classification)

e Each symbol (letter) is represented by 10,000-D hypervector
chosen at random:

-1+41-1-1-1+41-1-1
+1-1+1+1+1-1+1-1 ...
-1-1-1+41+1-1+4+1-1

1-1-1+41+41-1+1-1 ... “a “a
i 10,000 ”

-1-1+1-1+1+1+1-1

* Every letter hypervector is dissimilar to others, e.g., (A, B) =0
* This assignment is fixed throughout computation




Computing with Patterns
(the HD algebra)

Addition (+) is good for representing sets (bundling), since sum vector is
similar to its constituent vectors.

o (A+B, A)=0.5

Multiplication(*) is good for binding, since product vector is dissimilar to its
constituent vectors.

o (A*B, A)=0

Permutation (p) makes a dissimilar vector by rotating, and is good for
representing sequences.

0 (A, pA)=0

NOTE: * and p are invertible and preserve the distance

Distance Measurement (<>) computes distance between 2 vectors

— Parallel search for closest match performed in Associative Memory




Computing a Profile Using HD Arithmetic

e Trigram (3-letter sequence) : HD vector computed from its Letter Vectors
with permutation (cyclic shift) and pointwise multiplication.

example: “EAT” versus “ATE”

+1

New HD vector representing
sequence of characters

HD vector of
complete text:
Sum of trigrams
created by sliding
window




Example: Identifying Languages PROCESSING

Input Sentence

LEARNING
21 languages

1000 sentences/language Encoder
Letters only

Associative
Memory

'
Identified

,‘ 10,000 bit random vector Language

Associative Memory

Language
identification
Text
categorization

21 10,000D vectors
Stored in Associative Memory




HD applied to streaming signals

Example: Music signal

Mapped in HD space:
no visible structure

Mapping from high-dimensional to 2-dimensional space
Using t-SNE algorithm

[Courtesy: Justin Wong]




Imposing structure with HD

Taylor Swift ft. Ed Sheeran — Everything Has Changed
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[Courtesy: Justin Wong] HD song map




Classifying Music with HD

VR

In which song does segment occur?

Hypervector size (per song): 86 kB
Compression rate between 65 and 335
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[Courtesy: Justin Wong]




HD provides insights

Song 1 . . re .
Hypervector For music classification
CompareI
' ' Song 2
‘$ Hypervector
CompareI
Song 3
Hypervector

Classical O Taylor Swift

Or languages ...

[Courtesy: J. Wong and P. Kanerva]




Example: Space-Time Sequence Classification
Electromyography (EMG) for gesture recognition and prosthesis control

-i-it‘ififl-'"‘: =
PGA + o
[ARM SaC

[Berkeley FlexEMG]

Redundancy in acquisition array (64 electrodes)
provides robustness wrt variations (movement, long
term wear, day-to-day, ...)

[Hackberry Hand]




Signal Partitioning for Encoding

Closed hand
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Mapping to HD Space

* |tem Memory (iM) maps channels to orthogonal hypervectors.
e Continuous iM (CiM) maps quantities continuously to hypervectors.

Cim
uantization: . \ ( CiM(0), CiM(1) ) =0.95
h 21 :evetls J_. CiM I:> ( CiM(0), CiM(2) ) =0.90
( CiM(0), CiM(3) ) =0.85
( CiM(0), CimM(4) ) =0.80

( CIM(0), CIM(20) } = 0

iM

(IM(‘CH1’), iIM(‘CH2’) } = 0
"::> (IM(‘CH2’), IM(CH3’) } = 0
(IM(‘CH3’), iIM(‘CH4’) } = 0

* Yellow color codes components operating with HD distributed representation.

[Rahimi et al, ICRC 2016]




EMG Spatiotemporal Encoder

Preprocessing Spatial encoder
60 H Exp. Quani .
Notclz'n H filter ]’[ .21 ]’ CiM ‘ (\
E Temporal encoder

RIt] p(R[t-1]) p"HR[t-N+1])

e I 5 o }' CEM‘ QW%

* >

ngram[t]
EMG (Label[t]) += ngram[t]

[Rahimi et al, ICRC 2016]




Accuracy (%)

10 15 20 25 30 35 40 45 50 65 60 65 70 75 80 8 90 95

100

Fraction of training (%)

HDC achieves a high level of classification accuracy (97.8%) with only 1/3 the training data
required by state-of-the-art SVM




EMG Gesture Classification —
Learning Speed and Robustness

Subject 1

Subject 2

Average

Subject 1

Subject 2

Average

Subject 1
Subject 2

Average

[A. Zhou et al, to be published in SRC TechCon Sept. 2018]

95.086%

95.790%

95.438%

New context
91.297%
93.505%

92.401%

90.551%

96.489%

93.520%

65.757%

82.891%

74.324%

Old context
91.735%
96.195%

93.965%

96.756%

95.283% 99.251%

96.020% 97.022%

64.170%

93.126%

78.648%

New context Old context

89.147% 87.909%
99.122% 98.079%

94.135% 92.994%

2 subjects, 5 sessions

Train and test in same
session

True One-Shot
Learning!

97.065% 94.850%

99.180% 97.19%%

98.123% 96.024%

Train in one session and

use in other contexts
87.292%

99.296%

93.294%

Trained data adjusted in

new session

New context Old context

96.891% 94.852%
99.655% 99.381%

98.273% 97.117%




From Classification to Reasoning

A simple example

What is the Dollar of Mexico?

Learning (HD database representation)

R1 = Country * USA + MoneyUnit * Dollar + Population * 320M + ...
R2 = Country * Mexico + MoneyUnit * Peso + Population * 120M + ...

™~

Data stored in superposition
Queries

<R2 * Country> = Mexico
<R2 * <R1 * Dollar>> = Peso

* Yellow color codes components operating with HD distributed representation.
e <> stand for associative match




Scene Analysis and Spatial Reasoning

Each object in a scene (e.g. obtained using DNN): random HD vector

Object location: random HD vector
Scene vector: superposition of bindings of object and location vectors.
Query vector is formed using same algebra, and operates on scene vector via

multiplication.

o=

Response to the query “What is below a 2 and to the left of a 1?”

[Courtesy: B. Olshausen and Eric Weiss]




Scene Analysis and Spatial Reasoning

“Where Is the man?”

(“man”)1+x § = "

“Afghan hound” © ,
L - 7‘

i o D . . [l
background . “What is in the middle?”

———

-1

« 8§ = “Afghan hound”

[Courtesy: B. Olshausen and Eric Weiss]




Building a generic HD Processor

English: 110 ...
Francais: 0 1 0...

Espainol: 100 ...

the quick brown ...
data from

input stream) ﬂﬂﬂﬂ-n
DN | | Gooooss
‘OOOECIEE

COMPARATOR

21 (1015 ]12] 702 [ [10 |
00110011...0

Find most
Ssimilar vector

10000111...1
Process random vectors

Configurable to support broad

Store samples of random application range

HD vectors, the




A generic HD Processor
Pipelined array

architecture

Regular, simple DPU
CONFIGURABLE network

ENCODER :
No working memory

Short algorithms

Scalable in HD dimension

Many ways of using parallelism or to re-use components




HD Processor Prototype: Applications and results

Applications Encoding Known State-of-the-Art ML

Language Recognition n-gram 97.1%, n-gram k-Ne

FlexeMG Hand-Gesture Recog. n-gram 89.7%, Support ector Machine

DNA Sequencing features 93.7%, knowledge-based Neural Network

Fetal State Classif. (Cardio) feature 90.6%, Support Vector Machine

Page-Block Doc. Classification features 85.9%, min-max Hyperplane

UCI Human Activity Recogn. features 89.3%, Support Vector Machine

Spoken Letter Classification features 93.5%, Boosted k-Nearest Neighbors

Human Face Detection features 96.1%, HOG Boosted Decision Trees

MNIST Digit Classification features 99.7%, Convolutional Neural Network

Results based on TensorFlow HDC processor simulator
TSMC 28 HPM Pre-route Estimates: (assume Cosine distance measure)

Power Estimates (mW @ 0.8 VDD) Area breakdown (in sq. mm.)

Control&Misc = Control&Misc

Item Memory
a ative
item Memory Associative

Associative

Encoder

Note: this implementation does not use any low-

Between 1 and 10 wJ per classification TR
energy circuit optimization




HDC maps well into 3D nanostructures

* Tight interweaving of memory and logic

— True in-memory computing

* Approximate
— Extremely robust against failures and errors

— Allows for low SNR computing

e Scalable




Graceful degradation

100%
90% -0-HDC

80% O-Baseline

70%

60% Near peek accuracy:

ig:;: HDC tolerates 8.8-fold
probability of failure

30% :
20% compared to baseline
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Probability of failure for each memorycell (Rahimi et al, ISLPED 2016]

Case study: Language recognition; Baseline: histograms




Assoclative Memory

1 Encoder [l Item Memory [l Associative Memory

index =argmint, (|, In ) [ ey

1.4
1.3

WL(/n, s;) = D (~ 10,000) K
C: Number of learned items

Total Power (W)

Note: Traditional assoc. memory

Index = aro - 1( §: == fﬂ) ' 1000 2000 4000 8000 10000
- S= !

Hypervector Dimensions (bits)

Dominant contributor to power

Large range of implementation options:
Volatile vs non-volatile

Digital, analog

Accuracy

Memory organization

Data representation

Similar function (but different organization): Sparse distributed memory (SDM)




Device opportunity: 2-transistor CAM Cell
Ferroelectric AM
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Schematic of a Vertical
integrated FECAM cell

[Courtesy: Sayeef Salahuddin, UCB]




Process Opportunity:
3D integration of non-volatile memory (RRAM) and logic

VRRAM:
vertical
resistive
random
access
memory

H.-Y. Chen,..., H.-S. P. Wong, IEDM, 2012; H. Li, K.-S. Li,..., H.-S. P. Wong, Symp. VLSI Tech., 2016




3D Nanosystem for HD Computing

Monolithic 3D integration of logic and non-volatile memory

224 RRAM cells

Monolithic 3D 1,952 CNFETs
B CNFETs

i Wﬂ T \, ﬂ\\\\l |

L aﬁr*’ o ol it
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First 3D integrated HD Processor

[T. Wu et al, ISSCC 2018]




High-Order Bits

Brain-inspired learning-based computational models as an
exciting alternative to traditional algorithmic computing

Especially for perceptive and cognitive functions

HD offers exciting opportunity to bring learning-based
functionality to low-power, small form-factor devices (smart

world, smart human)

Realizable in todays CMOQOS, but truly shines in 3D nanoscale
technologies, integrating memory and logic
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