Towards Mission-Critical Control at the Edge and Over 5G

Per Skarin^{1,3} & William Tärneberg², Karl-Erik Årzen¹, Maria Kihl²

¹Dept. of Automatic Control, Lund Institute of Technology ²Dept. of Electrical and Information Technology, Lund Institute of Technology ³Ericsson Research, Lund, Sweden

Concept and Reference Platform

Affiliation

- We built a prototype fog compute platform
 - Next generation (5G) mobile broadband
 - A rich application environment through an IoT platform-as-a-service (Calvin)
 - Powerful tracing capabilities (LTTng)
- We demonstrate the capabilities of this platform
 - Able to control a physical systems at high frequencies
 - While relocating application components (on-the-fly)) over geographical disperse and heterogeneous environments
- Show an example of how the clouds can boost our control systems

Outline

- Motivation
- Platform and application
- Verification results
- Ongoing work

Motivation

- High speed closed loop control for cyber-physical systems
 - Cloud is an enabling technology, autonomous systems included
- Connected, convenient, mobile
 - 5G opens up for new types of applications

Critical Machine-Type Communication

Ultra-Reliable Low Latency Communication

Massive MIMO (5G) test-bed

12 May 2016 | 21:00 GMT

5G Researchers Set New World Record For Spectrum Efficiency

They showed a 22-fold increase over existing 4G networks

By Amy Nordrum

Photo: University of Bristol

Platform and application

Per Skarin, Lund Circuit Design Workshop 2018

Control Over the Cloud

Mission-critical

Essential to business operation or to an organization.

Time-sensitive

Only relevant or applicable for a short period of time. (Current target of systems operating at 10-100 Hz)

Networks

Delays, jitter and lost signals

Fog computing

Multi-tenancy, heterogeneity, structural changes, scaling and migration

Massive MIMO (5G) test-bed

S. Malkowsky et al.: The World's First Real-Time Testbed for Massive MIMO

Lund University Massive MIMO (LuMaMi)

- M-MIMO is candidate RAT for 5G
- Many devices simultaneously
- High reliability wireless
- Low latency*
- Medium Access Control break-out

*W. Tärneberg et al.: Utilizing Massive MIMO for the Tactile Internet: Advantages and Trade-offs, IEEE SECON Workshops

Components

Calvin: IoT Platform-as-a-Service

Open Source

Python runtime and C [+ μ Python] micro runtime

- Flow programing with stateful actors
- Deployment
- Network communication
- Application state
- Application component migration

- On-line optimization
 - Resource demanding
 - Variable execution time
 - Adaptable

$$u^{\star}(x) := \operatorname{argmin} \quad x_{N}^{T}Q_{f}x_{N} + \sum_{i=0}^{N-1} x_{i}^{T}Qx_{i} + u_{i}^{T}Ru_{i}$$
s.t. $x_{0} = x$ measurement
 $x_{i+1} = Ax_{i} + Bu_{i}$ system model
 $Cx_{i} + Du_{i} \leq b$ constraints
 $R \succ 0, Q \succ 0$ performance weights
 $u^{\star}(x) = \{\underbrace{u_{i}}, \dots, u_{N-1}^{\star}\}$ plant state x
Plant \longrightarrow Output y

Online-optimization

- The execution time of a controller can vary drastically
- Depends on the disturbances acting on the process and whether constraints are active

Controller induced delay

Verification

Per Skarin, Lund Circuit Design Workshop 2018

Experiments

- Run control from all geographical locations
- 8 Run control while migrating the controller
- Exemplify the effect of modified resource demand

Control from anywhere

• Competitive latencies but not single digit and a lot of overhead in the software platform

• We can move the control software randomly in the system while remaining operational

• With some tuning, we cause problems due to computational delay

Per Skarin, Lund Circuit Design Workshop 2018

Alexandre Martins

Autonomous learning camera systems in resource constrained environments Department of Automatic Control

Haorui Peng Networking for mobile edge cloud under 5G Department of Electrical and Information Technology

Johan Ruuskanen Even-based estimation and fusion for Cloud Systems Department of Automatic Control

Thank you for your attention

